sigmoid.social is one of the many independent Mastodon servers you can use to participate in the fediverse.
A social space for people researching, working with, or just interested in AI!

Server stats:

579
active users

#comprehension

0 posts0 participants0 posts today
WIST Quotations<p><a href="https://wist.info/mclaughlin-mignon/78589/" rel="nofollow noopener" target="_blank">A quotation from <b>Mignon McLaughlin</b></a></p><blockquote>We can never understand other people’s motives, nor their furniture. - Mignon McLaughlin</blockquote><p><b>Mignon McLaughlin</b> (1913-1983) American journalist and author<br><i>The Neurotic’s Notebook</i>, ch. 3 (1963)</p> <p>Sourcing, notes: <a href="https://wist.info/mclaughlin-mignon/78589/" rel="nofollow noopener" target="_blank">wist.info/mclaughlin-mignon/78…</a></p><p><a href="https://my-place.social/search?tag=quote" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>quote</span></a> <a href="https://my-place.social/search?tag=quotes" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>quotes</span></a> <a href="https://my-place.social/search?tag=quotation" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>quotation</span></a> <a href="https://my-place.social/search?tag=qotd" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>qotd</span></a> <a href="https://my-place.social/search?tag=aesthetic" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>aesthetic</span></a> <a href="https://my-place.social/search?tag=comprehension" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>comprehension</span></a> <a href="https://my-place.social/search?tag=furniture" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>furniture</span></a> <a href="https://my-place.social/search?tag=meme" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>meme</span></a> <a href="https://my-place.social/search?tag=motivation" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>motivation</span></a> <a href="https://my-place.social/search?tag=motives" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>motives</span></a> <a href="https://my-place.social/search?tag=others" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>others</span></a> <a href="https://my-place.social/search?tag=taste" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>taste</span></a> <a href="https://my-place.social/search?tag=understanding" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>understanding</span></a></p>
IWM Tübingen<p><a href="https://wisskomm.social/tags/IWMLecture" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>IWMLecture</span></a>: Media Affordances on How We Talk About &amp; Represent Narratives, Prof. Joseph P. Magliano. Mo, 14.07. 2025, 12:30 – 2:30 pm, large conf. room (IWM/Schleichstr. 6, Tübingen). </p><p>Everyone interested is welcome to join. ✔️ Participation online: 📧 redaktion(at)iwm-tuebingen.de<br><a href="https://wisskomm.social/tags/LearningSciences" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>LearningSciences</span></a> <a href="https://wisskomm.social/tags/edu" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>edu</span></a> <a href="https://wisskomm.social/tags/comprehension" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>comprehension</span></a> <a href="https://wisskomm.social/tags/digitaleBildung" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>digitaleBildung</span></a> <a href="https://wisskomm.social/tags/media" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>media</span></a></p>
jnpn<p>def f(z):<br> return [z, a:=z+1, b:=[a]*a, *[b]*len(b)]</p><p><a href="https://mastodon.social/tags/python" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>python</span></a> <a href="https://mastodon.social/tags/abuse" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>abuse</span></a> <a href="https://mastodon.social/tags/comprehension" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>comprehension</span></a> <a href="https://mastodon.social/tags/dubious" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>dubious</span></a></p>
Sean Murthy<p>German, the language with the most compelling argument for camelCase and PascalCase.</p><p><a href="https://hachyderm.io/tags/languages" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>languages</span></a> <a href="https://hachyderm.io/tags/German" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>German</span></a> <a href="https://hachyderm.io/tags/Deutsch" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Deutsch</span></a> <a href="https://hachyderm.io/tags/readability" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>readability</span></a> <a href="https://hachyderm.io/tags/comprehension" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>comprehension</span></a></p>
Sprachwissenschaft Uni Erfurt<p>Dr. Sarah-Maria Thumbeck gave a co-authored presentation with the title "Efficacy of a strategy-based <a href="https://wisskomm.social/tags/intervention" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>intervention</span></a> on text-level <a href="https://wisskomm.social/tags/reading" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>reading</span></a> <a href="https://wisskomm.social/tags/comprehension" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>comprehension</span></a> in persons with <a href="https://wisskomm.social/tags/aphasia" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>aphasia</span></a>: a repeated measures study" at the Nordic Aphasia Conference <br>in Uppsala on 9th June. <a href="https://www.nordicaphasia.com/programme/" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://www.</span><span class="">nordicaphasia.com/programme/</span><span class="invisible"></span></a></p>
chribonn<p>Analysed how well AI understands stories 🍎🍊. AI can get confused by extra details! 🤔 Keep content clear for better AI summaries. Always manually review AI analysis. </p><p><a href="https://twit.social/tags/AI" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>AI</span></a> <a href="https://twit.social/tags/Comprehension" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Comprehension</span></a> <a href="https://twit.social/tags/NarrativeAnalysis" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>NarrativeAnalysis</span></a> <a href="https://twit.social/tags/TechInsights" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>TechInsights</span></a> <a href="https://twit.social/tags/TTMO" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>TTMO</span></a> <a href="https://twit.social/tags/Semantics" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Semantics</span></a> <a href="https://twit.social/tags/ArtificialIntelligence" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>ArtificialIntelligence</span></a></p><p><a href="https://www.alanbonnici.com/2025/03/ai-got-it-wrong-comprehension.html" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://www.</span><span class="ellipsis">alanbonnici.com/2025/03/ai-got</span><span class="invisible">-it-wrong-comprehension.html</span></a></p>
Rod2ik 🇪🇺 🇨🇵 🇪🇸 🇺🇦 🇨🇦 🇩🇰 🇬🇱☮🕊️<p>James <a href="https://mastodon.social/tags/Webb" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Webb</span></a> confirme que quelque chose ne va pas dans notre <a href="https://mastodon.social/tags/compr%C3%A9hension" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>compréhension</span></a> actuelle de l’ <a href="https://mastodon.social/tags/univers" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>univers</span></a></p><p><a href="https://sciencepost.fr/james-webb-comprehension-univers/" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">sciencepost.fr/james-webb-comp</span><span class="invisible">rehension-univers/</span></a></p>
WIST Quotations<p><a href="https://wist.info/montaigne-michel-de/38164/" rel="nofollow noopener" target="_blank">A quotation from <b>Montaigne</b></a></p><blockquote>We readily inquire, “Does he know Greek or Latin?” “Can he write poetry and prose?” But what matters most is what we put last: “Has he become better and wiser?” We ought to find out not who understands most but who understands best. We work merely to fill the memory, leaving the understanding and the sense of right and wrong empty.<br>&nbsp;<br><i>[Nous enquerons volontiers, Sçait-il du Grec ou du Latin ? escrit-il en vers ou en prose ? mais, s’il est devenu meilleur ou plus advisé, c’estoit le principal, &amp; c’est ce qui demeure derriere. Il falloit s’enquerir qui est mieux sçavant, non qui est plus sçavant. Nous ne travaillons qu’à remplir la memoire, &amp; laissons l’entendement &amp; la conscience vuide.]</i></blockquote><p><b>Michel de Montaigne</b> (1533-1592) French essayist<br>Essay (yyyy), “Of Pedantry[Du pedantisme] (1572-1578), <i>Essays</i>, Book 1, ch. 24 (1.24) (1595) [tr. Screech (1987), ch. 25]</p> <p>Sourcing, notes, alternate translations: <a href="https://wist.info/montaigne-michel-de/38164/" rel="nofollow noopener" target="_blank">wist.info/montaigne-michel-de/…</a></p><p><a href="https://my-place.social/search?tag=quote" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>quote</span></a> <a href="https://my-place.social/search?tag=quotes" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>quotes</span></a> <a href="https://my-place.social/search?tag=quotation" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>quotation</span></a> <a href="https://my-place.social/search?tag=Montaigne" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Montaigne</span></a> <a href="https://my-place.social/search?tag=comprehension" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>comprehension</span></a> <a href="https://my-place.social/search?tag=education" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>education</span></a> <a href="https://my-place.social/search?tag=evaluation" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>evaluation</span></a> <a href="https://my-place.social/search?tag=improvement" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>improvement</span></a> <a href="https://my-place.social/search?tag=learning" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>learning</span></a> <a href="https://my-place.social/search?tag=memorization" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>memorization</span></a> <a href="https://my-place.social/search?tag=rubric" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>rubric</span></a> <a href="https://my-place.social/search?tag=school" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>school</span></a> <a href="https://my-place.social/search?tag=student" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>student</span></a> <a href="https://my-place.social/search?tag=teaching" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>teaching</span></a> <a href="https://my-place.social/search?tag=understanding" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>understanding</span></a> <a href="https://my-place.social/search?tag=wisdom" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>wisdom</span></a></p>
Rod2ik 🇪🇺 🇨🇵 🇪🇸 🇺🇦 🇨🇦 🇩🇰 🇬🇱☮🕊️<p>Deux <a href="https://mastodon.social/tags/fl%C3%A8ches" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>flèches</span></a> du <a href="https://mastodon.social/tags/temps" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>temps</span></a> issues du <a href="https://mastodon.social/tags/monde" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>monde</span></a> <a href="https://mastodon.social/tags/quantique" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>quantique</span></a> : une découverte qui bouleverse notre <a href="https://mastodon.social/tags/compr%C3%A9hension" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>compréhension</span></a> du <a href="https://mastodon.social/tags/temps" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>temps</span></a></p><p><a href="https://www.science-et-vie.com/ciel-et-espace/deux-fleches-du-temps-issues-du-monde-quantique-une-decouverte-qui-bouleverse-notre-comprehension-du-temps-191546.html" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://www.</span><span class="ellipsis">science-et-vie.com/ciel-et-esp</span><span class="invisible">ace/deux-fleches-du-temps-issues-du-monde-quantique-une-decouverte-qui-bouleverse-notre-comprehension-du-temps-191546.html</span></a></p>
Rod2ik 🇪🇺 🇨🇵 🇪🇸 🇺🇦 🇨🇦 🇩🇰 🇬🇱☮🕊️<p>L' <a href="https://mastodon.social/tags/Europe" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Europe</span></a> ( l' <a href="https://mastodon.social/tags/UE" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>UE</span></a> ) bouleverse la <a href="https://mastodon.social/tags/physique" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>physique</span></a> <a href="https://mastodon.social/tags/mondiale" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>mondiale</span></a> avec la <a href="https://mastodon.social/tags/cr%C3%A9ation" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>création</span></a> de <a href="https://mastodon.social/tags/particules" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>particules</span></a> <a href="https://mastodon.social/tags/quarks" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>quarks</span></a>, une <a href="https://mastodon.social/tags/d%C3%A9couverte" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>découverte</span></a> <a href="https://mastodon.social/tags/historique" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>historique</span></a> qui marque un <a href="https://mastodon.social/tags/tournant" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>tournant</span></a> pour la <a href="https://mastodon.social/tags/compr%C3%A9hension" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>compréhension</span></a> de l’ <a href="https://mastodon.social/tags/univers" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>univers</span></a></p><p><a href="https://www.mobeez.fr/actualites/17400/leurope-bouleverse-la-physique-mondiale-avec-la-creation-de-particules-quarks-une-decouverte-historique-qui-marque-un-tournant-pour-la-comprehension-de-lunivers/" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://www.</span><span class="ellipsis">mobeez.fr/actualites/17400/leu</span><span class="invisible">rope-bouleverse-la-physique-mondiale-avec-la-creation-de-particules-quarks-une-decouverte-historique-qui-marque-un-tournant-pour-la-comprehension-de-lunivers/</span></a></p>
Steve Faulkner<p>👁️ References to Flesch Reading Ease score and Flesch Kincaid Grade Level </p><p><a href="https://mastodon.social/tags/WCAG" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>WCAG</span></a> <a href="https://mastodon.social/tags/comprehension" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>comprehension</span></a> <a href="https://mastodon.social/tags/testing" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>testing</span></a> <a href="https://mastodon.social/tags/accessibility" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>accessibility</span></a> </p><p><a href="https://github.com/w3c/wcag/issues/4022" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="">github.com/w3c/wcag/issues/4022</span><span class="invisible"></span></a></p>
Wolf<p>Lots of <a href="https://hachyderm.io/tags/rustlang" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>rustlang</span></a> over the weekend. Lots of stuff to say. I’m writing small programs (mostly <a href="https://hachyderm.io/tags/adventofcode" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>adventofcode</span></a>) with lots of looking stuff up. Looking stuff up shows me just how much _more_ Rust there is to know. Rust chained iterator expressions can do everything a <a href="https://hachyderm.io/tags/Python" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Python</span></a> list <a href="https://hachyderm.io/tags/comprehension" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>comprehension</span></a> can do. I use <a href="https://hachyderm.io/tags/pandas" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>pandas</span></a> all the time. <a href="https://hachyderm.io/tags/polars" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>polars</span></a> is data compatible and you can call it from Rust. This could help me in my job. The way you implement methods in Rust is _so_ much like type-bound procedures in <a href="https://hachyderm.io/tags/oberon2" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>oberon2</span></a>. I have more and more respect for Rust. I still love Python.</p>
Rod2ik 🇪🇺 🇨🇵 🇪🇸 🇺🇦 🇨🇦 🇩🇰 🇬🇱☮🕊️<p><a href="https://mastodon.social/tags/Lara" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Lara</span></a> meilleur que <a href="https://mastodon.social/tags/Google" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Google</span></a> <a href="https://mastodon.social/tags/traduction" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>traduction</span></a> ?<br>En plus de la <a href="https://mastodon.social/tags/traduction" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>traduction</span></a>, <a href="https://mastodon.social/tags/Lara" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Lara</span></a> est capable de <a href="https://mastodon.social/tags/justifier" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>justifier</span></a> ses <a href="https://mastodon.social/tags/choix" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>choix</span></a> pour une <a href="https://mastodon.social/tags/meilleure" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>meilleure</span></a> <a href="https://mastodon.social/tags/compr%C3%A9hension" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>compréhension</span></a>.</p><p><a href="https://www.presse-citron.net/quest-ce-que-lara-le-nouvel-outil-de-traduction-qui-promet-denterrer-google-trad/" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://www.</span><span class="ellipsis">presse-citron.net/quest-ce-que</span><span class="invisible">-lara-le-nouvel-outil-de-traduction-qui-promet-denterrer-google-trad/</span></a></p>
Sprachwissenschaft Uni Erfurt<p>Das Team der <a href="https://wisskomm.social/tags/Psycholinguistik" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Psycholinguistik</span></a> und das Seminar der <a href="https://wisskomm.social/tags/Sprachwissenschaft" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Sprachwissenschaft</span></a> gratulieren Dr. Sarah-Maria Thumbeck herzlich zur Promotion! Ihre Dissertation mit dem Titel "<a href="https://wisskomm.social/tags/Text" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Text</span></a> <a href="https://wisskomm.social/tags/Comprehension" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Comprehension</span></a> in <a href="https://wisskomm.social/tags/Aphasia" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Aphasia</span></a> : Theory-Driven <a href="https://wisskomm.social/tags/Assessment" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Assessment</span></a> and Strategy-Based <a href="https://wisskomm.social/tags/Intervention" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Intervention</span></a>" befindet sich als <a href="https://wisskomm.social/tags/openaccess" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>openaccess</span></a> Publikation hier: <a href="https://www.db-thueringen.de/receive/dbt_mods_00062626?q=thumbeck" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://www.</span><span class="ellipsis">db-thueringen.de/receive/dbt_m</span><span class="invisible">ods_00062626?q=thumbeck</span></a></p>
Jon Awbrey<p>Information = Comprehension × Extension • Selection 2.3<br>• <a href="https://inquiryintoinquiry.com/2024/10/06/information-comprehension-x-extension-selection-2-a/" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">inquiryintoinquiry.com/2024/10</span><span class="invisible">/06/information-comprehension-x-extension-selection-2-a/</span></a></p><p>❝The third and last kind of representations are “symbols” or general representations. They connote attributes and so connote them as to determine what they denote. To this class belong all “words” and all “conceptions”. Most combinations of words are also symbols. A proposition, an argument, even a whole book may be, and should be, a single symbol.❞</p><p>(Peirce 1866, pp. 467–468)</p><p>Reference —</p><p>Peirce, C.S. (1866), “The Logic of Science, or, Induction and Hypothesis”, Lowell Lectures of 1866, pp. 357–504 in Writings of Charles S. Peirce : A Chronological Edition, Volume 1, 1857–1866, Peirce Edition Project, Indiana University Press, Bloomington, IN, 1982.</p><p>Resources —</p><p>Inquiry Blog • Survey of Pragmatic Semiotic Information<br>• <a href="https://inquiryintoinquiry.com/2024/03/01/survey-of-pragmatic-semiotic-information-8/" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">inquiryintoinquiry.com/2024/03</span><span class="invisible">/01/survey-of-pragmatic-semiotic-information-8/</span></a></p><p>OEIS Wiki • Information = Comprehension × Extension<br>• <a href="https://oeis.org/wiki/Information_%3D_Comprehension_%C3%97_Extension" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">oeis.org/wiki/Information_%3D_</span><span class="invisible">Comprehension_%C3%97_Extension</span></a></p><p>C.S. Peirce • Upon Logical Comprehension and Extension<br>• <a href="https://peirce.sitehost.iu.edu/writings/v2/w2/w2_06/v2_06.htm" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">peirce.sitehost.iu.edu/writing</span><span class="invisible">s/v2/w2/w2_06/v2_06.htm</span></a></p><p><a href="https://mathstodon.xyz/tags/Peirce" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Peirce</span></a> <a href="https://mathstodon.xyz/tags/Logic" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Logic</span></a> <a href="https://mathstodon.xyz/tags/Inference" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Inference</span></a> <a href="https://mathstodon.xyz/tags/Inquiry" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Inquiry</span></a> <a href="https://mathstodon.xyz/tags/Abduction" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Abduction</span></a> <a href="https://mathstodon.xyz/tags/Induction" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Induction</span></a> <a href="https://mathstodon.xyz/tags/Deduction" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Deduction</span></a> <a href="https://mathstodon.xyz/tags/LogicOfScience" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>LogicOfScience</span></a> <br><a href="https://mathstodon.xyz/tags/Information" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Information</span></a> <a href="https://mathstodon.xyz/tags/Comprehension" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Comprehension</span></a> <a href="https://mathstodon.xyz/tags/Extension" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Extension</span></a> <a href="https://mathstodon.xyz/tags/InformationEqualsComprehensionTimesExtension" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>InformationEqualsComprehensionTimesExtension</span></a> <br><a href="https://mathstodon.xyz/tags/Semiotics" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Semiotics</span></a> <a href="https://mathstodon.xyz/tags/SignRelations" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>SignRelations</span></a> <a href="https://mathstodon.xyz/tags/Icon" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Icon</span></a> <a href="https://mathstodon.xyz/tags/Index" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Index</span></a> <a href="https://mathstodon.xyz/tags/Symbol" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Symbol</span></a> <a href="https://mathstodon.xyz/tags/PragmaticSemioticInformation" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>PragmaticSemioticInformation</span></a></p>
Jon Awbrey<p>Information = Comprehension × Extension • Selection 2.2<br>• <a href="https://inquiryintoinquiry.com/2024/10/06/information-comprehension-x-extension-selection-2-a/" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">inquiryintoinquiry.com/2024/10</span><span class="invisible">/06/information-comprehension-x-extension-selection-2-a/</span></a></p><p>❝In the first place there are likenesses or copies — such as “statues”, “pictures”, “emblems”, “hieroglyphics”, and the like. Such representations stand for their objects only so far as they have an actual resemblance to them — that is agree with them in some characters. The peculiarity of such representations is that they do not determine their objects — they stand for anything more or less; for they stand for whatever they resemble and they resemble everything more or less.</p><p>❝The second kind of representations are such as are set up by a convention of men or a decree of God. Such are “tallies”, “proper names”, &amp;c. The peculiarity of these “conventional signs” is that they represent no character of their objects.</p><p>❝Likenesses denote nothing in particular; “conventional signs” connote nothing in particular.❞</p><p>(Peirce 1866, pp. 467–468)</p><p>Reference —</p><p>Peirce, C.S. (1866), “The Logic of Science, or, Induction and Hypothesis”, Lowell Lectures of 1866, pp. 357–504 in Writings of Charles S. Peirce : A Chronological Edition, Volume 1, 1857–1866, Peirce Edition Project, Indiana University Press, Bloomington, IN, 1982.</p><p><a href="https://mathstodon.xyz/tags/Peirce" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Peirce</span></a> <a href="https://mathstodon.xyz/tags/Logic" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Logic</span></a> <a href="https://mathstodon.xyz/tags/Inference" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Inference</span></a> <a href="https://mathstodon.xyz/tags/Inquiry" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Inquiry</span></a> <a href="https://mathstodon.xyz/tags/Abduction" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Abduction</span></a> <a href="https://mathstodon.xyz/tags/Induction" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Induction</span></a> <a href="https://mathstodon.xyz/tags/Deduction" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Deduction</span></a> <a href="https://mathstodon.xyz/tags/LogicOfScience" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>LogicOfScience</span></a> <br><a href="https://mathstodon.xyz/tags/Information" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Information</span></a> <a href="https://mathstodon.xyz/tags/Comprehension" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Comprehension</span></a> <a href="https://mathstodon.xyz/tags/Extension" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Extension</span></a> <a href="https://mathstodon.xyz/tags/InformationEqualsComprehensionTimesExtension" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>InformationEqualsComprehensionTimesExtension</span></a> <br><a href="https://mathstodon.xyz/tags/Semiotics" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Semiotics</span></a> <a href="https://mathstodon.xyz/tags/SignRelations" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>SignRelations</span></a> <a href="https://mathstodon.xyz/tags/Icon" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Icon</span></a> <a href="https://mathstodon.xyz/tags/Index" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Index</span></a> <a href="https://mathstodon.xyz/tags/Symbol" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Symbol</span></a> <a href="https://mathstodon.xyz/tags/PragmaticSemioticInformation" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>PragmaticSemioticInformation</span></a></p>
Jon Awbrey<p>Information = Comprehension × Extension • Selection 2.1<br>• <a href="https://inquiryintoinquiry.com/2024/10/06/information-comprehension-x-extension-selection-2-a/" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">inquiryintoinquiry.com/2024/10</span><span class="invisible">/06/information-comprehension-x-extension-selection-2-a/</span></a></p><p>Re: Information = Comprehension × Extension • Selection 1<br>• <a href="https://inquiryintoinquiry.com/2024/10/05/information-comprehension-x-extension-selection-1-a/" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">inquiryintoinquiry.com/2024/10</span><span class="invisible">/05/information-comprehension-x-extension-selection-1-a/</span></a></p><p>Over the course of Selection 1 Peirce introduces the ideas he needs to answer stubborn questions about the validity of scientific inference. Briefly put, the validity of scientific inference depends on the ability of symbols to express “superfluous comprehension”, the measure of which Peirce calls “information”.</p><p>Selection 2 sharpens our picture of symbols as “general representations”, contrasting them with two species of representation whose characters fall short of genuine symbols.</p><p>❝For this purpose, I must call your attention to the differences there are in the manner in which different representations stand for their objects.❞</p><p>(Peirce 1866, pp. 467–468)</p><p>Reference —</p><p>Peirce, C.S. (1866), “The Logic of Science, or, Induction and Hypothesis”, Lowell Lectures of 1866, pp. 357–504 in Writings of Charles S. Peirce : A Chronological Edition, Volume 1, 1857–1866, Peirce Edition Project, Indiana University Press, Bloomington, IN, 1982.</p><p><a href="https://mathstodon.xyz/tags/Peirce" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Peirce</span></a> <a href="https://mathstodon.xyz/tags/Logic" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Logic</span></a> <a href="https://mathstodon.xyz/tags/Inference" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Inference</span></a> <a href="https://mathstodon.xyz/tags/Inquiry" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Inquiry</span></a> <a href="https://mathstodon.xyz/tags/Abduction" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Abduction</span></a> <a href="https://mathstodon.xyz/tags/Induction" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Induction</span></a> <a href="https://mathstodon.xyz/tags/Deduction" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Deduction</span></a> <a href="https://mathstodon.xyz/tags/LogicOfScience" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>LogicOfScience</span></a> <br><a href="https://mathstodon.xyz/tags/Information" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Information</span></a> <a href="https://mathstodon.xyz/tags/Comprehension" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Comprehension</span></a> <a href="https://mathstodon.xyz/tags/Extension" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Extension</span></a> <a href="https://mathstodon.xyz/tags/InformationEqualsComprehensionTimesExtension" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>InformationEqualsComprehensionTimesExtension</span></a> <br><a href="https://mathstodon.xyz/tags/Semiotics" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Semiotics</span></a> <a href="https://mathstodon.xyz/tags/SignRelations" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>SignRelations</span></a> <a href="https://mathstodon.xyz/tags/Icon" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Icon</span></a> <a href="https://mathstodon.xyz/tags/Index" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Index</span></a> <a href="https://mathstodon.xyz/tags/Symbol" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Symbol</span></a> <a href="https://mathstodon.xyz/tags/PragmaticSemioticInformation" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>PragmaticSemioticInformation</span></a></p>
Jon Awbrey<p>Information = Comprehension × Extension • Selection 1.2<br>• <a href="https://inquiryintoinquiry.com/2024/10/05/information-comprehension-x-extension-selection-1-a/" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">inquiryintoinquiry.com/2024/10</span><span class="invisible">/05/information-comprehension-x-extension-selection-1-a/</span></a></p><p>❝Thus, let us commence with the term “colour”; add to the comprehension of this term, that of “red”. “Red colour” has considerably less extension than “colour”; add to this the comprehension of “dark”; “dark red colour” has still less [extension]. Add to this the comprehension of “non‑blue” — “non‑blue dark red colour” has the same extension as “dark red colour”, so that the “non‑blue” here performs a work of supererogation; it tells us that no “dark red colour” is blue, but does none of the proper business of connotation, that of diminishing the extension at all. Thus information measures the superfluous comprehension. And, hence, whenever we make a symbol to express any thing or any attribute we cannot make it so empty that it shall have no superfluous comprehension.</p><p>❝I am going, next, to show that inference is symbolization and that the puzzle of the validity of scientific inference lies merely in this superfluous comprehension and is therefore entirely removed by a consideration of the laws of “information”.❞</p><p>(Peirce 1866, p. 467)</p><p>Reference —</p><p>Peirce, C.S. (1866), “The Logic of Science, or, Induction and Hypothesis”, Lowell Lectures of 1866, pp. 357–504 in Writings of Charles S. Peirce : A Chronological Edition, Volume 1, 1857–1866, Peirce Edition Project, Indiana University Press, Bloomington, IN, 1982.</p><p><a href="https://mathstodon.xyz/tags/Peirce" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Peirce</span></a> <a href="https://mathstodon.xyz/tags/Logic" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Logic</span></a> <a href="https://mathstodon.xyz/tags/Inference" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Inference</span></a> <a href="https://mathstodon.xyz/tags/Inquiry" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Inquiry</span></a> <a href="https://mathstodon.xyz/tags/Abduction" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Abduction</span></a> <a href="https://mathstodon.xyz/tags/Induction" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Induction</span></a> <a href="https://mathstodon.xyz/tags/Deduction" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Deduction</span></a> <a href="https://mathstodon.xyz/tags/LogicOfScience" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>LogicOfScience</span></a> <br><a href="https://mathstodon.xyz/tags/Information" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Information</span></a> <a href="https://mathstodon.xyz/tags/Comprehension" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Comprehension</span></a> <a href="https://mathstodon.xyz/tags/Extension" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Extension</span></a> <a href="https://mathstodon.xyz/tags/InformationEqualsComprehensionTimesExtension" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>InformationEqualsComprehensionTimesExtension</span></a> <br><a href="https://mathstodon.xyz/tags/Semiotics" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Semiotics</span></a> <a href="https://mathstodon.xyz/tags/SignRelations" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>SignRelations</span></a> <a href="https://mathstodon.xyz/tags/Icon" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Icon</span></a> <a href="https://mathstodon.xyz/tags/Index" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Index</span></a> <a href="https://mathstodon.xyz/tags/Symbol" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Symbol</span></a> <a href="https://mathstodon.xyz/tags/PragmaticSemioticInformation" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>PragmaticSemioticInformation</span></a></p>
Jon Awbrey<p>Information = Comprehension × Extension • Selection 1.1<br>• <a href="https://inquiryintoinquiry.com/2024/10/05/information-comprehension-x-extension-selection-1-a/" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">inquiryintoinquiry.com/2024/10</span><span class="invisible">/05/information-comprehension-x-extension-selection-1-a/</span></a></p><p>Our first text comes from Peirce's Lowell Lectures of 1866, titled “The Logic of Science, or, Induction and Hypothesis”. I still remember the first time I read these words and the light that lit up the page and my mind.</p><p>❝Let us now return to the information. The information of a term is the measure of its superfluous comprehension. That is to say that the proper office of the comprehension is to determine the extension of the term. For instance, you and I are men because we possess those attributes — having two legs, being rational, &amp;c. — which make up the comprehension of “man”. Every addition to the comprehension of a term lessens its extension up to a certain point, after that further additions increase the information instead.❞</p><p>(Peirce 1866, p. 467)</p><p>Reference —</p><p>Peirce, C.S. (1866), “The Logic of Science, or, Induction and Hypothesis”, Lowell Lectures of 1866, pp. 357–504 in Writings of Charles S. Peirce : A Chronological Edition, Volume 1, 1857–1866, Peirce Edition Project, Indiana University Press, Bloomington, IN, 1982.</p><p>Resources —</p><p>Inquiry Blog • Survey of Pragmatic Semiotic Information<br>• <a href="https://inquiryintoinquiry.com/2024/03/01/survey-of-pragmatic-semiotic-information-8/" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">inquiryintoinquiry.com/2024/03</span><span class="invisible">/01/survey-of-pragmatic-semiotic-information-8/</span></a></p><p>OEIS Wiki • Information = Comprehension × Extension<br>• <a href="https://oeis.org/wiki/Information_%3D_Comprehension_%C3%97_Extension" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">oeis.org/wiki/Information_%3D_</span><span class="invisible">Comprehension_%C3%97_Extension</span></a></p><p>C.S. Peirce • Upon Logical Comprehension and Extension<br>• <a href="https://peirce.sitehost.iu.edu/writings/v2/w2/w2_06/v2_06.htm" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">peirce.sitehost.iu.edu/writing</span><span class="invisible">s/v2/w2/w2_06/v2_06.htm</span></a></p><p><a href="https://mathstodon.xyz/tags/Peirce" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Peirce</span></a> <a href="https://mathstodon.xyz/tags/Logic" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Logic</span></a> <a href="https://mathstodon.xyz/tags/Inference" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Inference</span></a> <a href="https://mathstodon.xyz/tags/Inquiry" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Inquiry</span></a> <a href="https://mathstodon.xyz/tags/Abduction" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Abduction</span></a> <a href="https://mathstodon.xyz/tags/Induction" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Induction</span></a> <a href="https://mathstodon.xyz/tags/Deduction" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Deduction</span></a> <a href="https://mathstodon.xyz/tags/LogicOfScience" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>LogicOfScience</span></a> <br><a href="https://mathstodon.xyz/tags/Information" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Information</span></a> <a href="https://mathstodon.xyz/tags/Comprehension" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Comprehension</span></a> <a href="https://mathstodon.xyz/tags/Extension" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Extension</span></a> <a href="https://mathstodon.xyz/tags/InformationEqualsComprehensionTimesExtension" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>InformationEqualsComprehensionTimesExtension</span></a> <br><a href="https://mathstodon.xyz/tags/Semiotics" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Semiotics</span></a> <a href="https://mathstodon.xyz/tags/SignRelations" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>SignRelations</span></a> <a href="https://mathstodon.xyz/tags/Icon" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Icon</span></a> <a href="https://mathstodon.xyz/tags/Index" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Index</span></a> <a href="https://mathstodon.xyz/tags/Symbol" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Symbol</span></a> <a href="https://mathstodon.xyz/tags/PragmaticSemioticInformation" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>PragmaticSemioticInformation</span></a></p>
Jon Awbrey<p>Information = Comprehension × Extension • Preamble<br>• <a href="https://inquiryintoinquiry.com/2024/10/04/information-comprehension-x-extension-preamble/" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">inquiryintoinquiry.com/2024/10</span><span class="invisible">/04/information-comprehension-x-extension-preamble/</span></a></p><p>Eight summers ago I hit on what struck me as a new insight into one of the most recalcitrant problems in Peirce’s semiotics and logic of science, namely, the relation between “the manner in which different representations stand for their objects” and the way in which different inferences transform states of information. I roughed out a sketch of my epiphany in a series of blog posts then set it aside for the cool of later reflection. Now looks to be a choice moment for taking another look.</p><p>A first pass through the variations of representation and reasoning detects the axes of iconic, indexical, and symbolic manners of representation on the one hand and the axes of abductive, inductive, and deductive modes of inference on the other. Early and often Peirce suggests a natural correspondence between the main modes of inference and the main manners of representation but his early arguments differ from his later accounts in ways deserving close examination, partly for the extra points in his line of reasoning and partly for his explanation of indices as signs constituted by convening the variant conceptions of sundry interpreters.</p><p>Resources —</p><p>Inquiry Blog • Survey of Pragmatic Semiotic Information<br>• <a href="https://inquiryintoinquiry.com/2024/03/01/survey-of-pragmatic-semiotic-information-8/" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">inquiryintoinquiry.com/2024/03</span><span class="invisible">/01/survey-of-pragmatic-semiotic-information-8/</span></a></p><p>OEIS Wiki • Information = Comprehension × Extension<br>• <a href="https://oeis.org/wiki/Information_%3D_Comprehension_%C3%97_Extension" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">oeis.org/wiki/Information_%3D_</span><span class="invisible">Comprehension_%C3%97_Extension</span></a></p><p>C.S. Peirce • Upon Logical Comprehension and Extension<br>• <a href="https://peirce.sitehost.iu.edu/writings/v2/w2/w2_06/v2_06.htm" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">peirce.sitehost.iu.edu/writing</span><span class="invisible">s/v2/w2/w2_06/v2_06.htm</span></a></p><p><a href="https://mathstodon.xyz/tags/Peirce" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Peirce</span></a> <a href="https://mathstodon.xyz/tags/Logic" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Logic</span></a> <a href="https://mathstodon.xyz/tags/Inference" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Inference</span></a> <a href="https://mathstodon.xyz/tags/Inquiry" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Inquiry</span></a> <a href="https://mathstodon.xyz/tags/Abduction" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Abduction</span></a> <a href="https://mathstodon.xyz/tags/Induction" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Induction</span></a> <a href="https://mathstodon.xyz/tags/Deduction" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Deduction</span></a> <a href="https://mathstodon.xyz/tags/LogicOfScience" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>LogicOfScience</span></a> <br><a href="https://mathstodon.xyz/tags/Information" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Information</span></a> <a href="https://mathstodon.xyz/tags/Comprehension" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Comprehension</span></a> <a href="https://mathstodon.xyz/tags/Extension" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Extension</span></a> <a href="https://mathstodon.xyz/tags/InformationEqualsComprehensionTimesExtension" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>InformationEqualsComprehensionTimesExtension</span></a> <br><a href="https://mathstodon.xyz/tags/Semiotics" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Semiotics</span></a> <a href="https://mathstodon.xyz/tags/SignRelations" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>SignRelations</span></a> <a href="https://mathstodon.xyz/tags/Icon" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Icon</span></a> <a href="https://mathstodon.xyz/tags/Index" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Index</span></a> <a href="https://mathstodon.xyz/tags/Symbol" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Symbol</span></a> <a href="https://mathstodon.xyz/tags/PragmaticSemioticInformation" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>PragmaticSemioticInformation</span></a></p>