sigmoid.social is one of the many independent Mastodon servers you can use to participate in the fediverse.
A social space for people researching, working with, or just interested in AI!

Server stats:

587
active users

#hippocampal

0 posts0 participants0 posts today
Fabrizio Musacchio<p>📖 Vaidya et al. investigate how <a href="https://sigmoid.social/tags/hippocampal" class="mention hashtag" rel="tag">#<span>hippocampal</span></a> <a href="https://sigmoid.social/tags/CA1" class="mention hashtag" rel="tag">#<span>CA1</span></a> <a href="https://sigmoid.social/tags/PlaceCells" class="mention hashtag" rel="tag">#<span>PlaceCells</span></a> form expanding <a href="https://sigmoid.social/tags/memory" class="mention hashtag" rel="tag">#<span>memory</span></a> representations over days. Using longitudinal in vivo recordings, they show that stable <a href="https://sigmoid.social/tags/PlaceFields" class="mention hashtag" rel="tag">#<span>PlaceFields</span></a> progressively emerge as active cells increase their likelihood of remaining active across sessions. This gradual stabilization hinges on <a href="https://sigmoid.social/tags/behavioral" class="mention hashtag" rel="tag">#<span>behavioral</span></a>‑timescale <a href="https://sigmoid.social/tags/SynapticPlasticity" class="mention hashtag" rel="tag">#<span>SynapticPlasticity</span></a>, offering a new model of how CA1 memories solidify w/o <a href="https://sigmoid.social/tags/CatastrophicOverwriting" class="mention hashtag" rel="tag">#<span>CatastrophicOverwriting</span></a>.</p><p>🌍 <a href="https://www.nature.com/articles/s41593-025-01986-3" target="_blank" rel="nofollow noopener" translate="no"><span class="invisible">https://www.</span><span class="ellipsis">nature.com/articles/s41593-025</span><span class="invisible">-01986-3</span></a></p><p><a href="https://sigmoid.social/tags/Hippocampus" class="mention hashtag" rel="tag">#<span>Hippocampus</span></a> <a href="https://sigmoid.social/tags/Neuroscience" class="mention hashtag" rel="tag">#<span>Neuroscience</span></a></p>
Fabrizio Musacchio<p>This paper by Raju et al. proposes a unified model – “clone‑structured causal <a href="https://sigmoid.social/tags/graphs" class="mention hashtag" rel="tag">#<span>graphs</span></a>” (<a href="https://sigmoid.social/tags/CSCG" class="mention hashtag" rel="tag">#<span>CSCG</span></a>) – for <a href="https://sigmoid.social/tags/hippocampal" class="mention hashtag" rel="tag">#<span>hippocampal</span></a> <a href="https://sigmoid.social/tags/SpatialCoding" class="mention hashtag" rel="tag">#<span>SpatialCoding</span></a>. It suggests that <a href="https://sigmoid.social/tags/SpatialMaps" class="mention hashtag" rel="tag">#<span>SpatialMaps</span></a> arise from <a href="https://sigmoid.social/tags/learning" class="mention hashtag" rel="tag">#<span>learning</span></a> <a href="https://sigmoid.social/tags/latent" class="mention hashtag" rel="tag">#<span>latent</span></a> higher‑order sequences rather than representing <a href="https://sigmoid.social/tags/EuclideanSpace" class="mention hashtag" rel="tag">#<span>EuclideanSpace</span></a> directly. The model elegantly explains phenomena like <a href="https://sigmoid.social/tags/PlaceFields" class="mention hashtag" rel="tag">#<span>PlaceFields</span></a>, <a href="https://sigmoid.social/tags/SplitterCells" class="mention hashtag" rel="tag">#<span>SplitterCells</span></a>, <a href="https://sigmoid.social/tags/contextual" class="mention hashtag" rel="tag">#<span>contextual</span></a> <a href="https://sigmoid.social/tags/remapping" class="mention hashtag" rel="tag">#<span>remapping</span></a>, and predicts when <a href="https://sigmoid.social/tags/PlaceFieldMapping" class="mention hashtag" rel="tag">#<span>PlaceFieldMapping</span></a> may mislead.</p><p>🌍 <a href="https://www.science.org/doi/10.1126/sciadv.adm8470" target="_blank" rel="nofollow noopener" translate="no"><span class="invisible">https://www.</span><span class="ellipsis">science.org/doi/10.1126/sciadv</span><span class="invisible">.adm8470</span></a></p><p><a href="https://sigmoid.social/tags/Hippocampus" class="mention hashtag" rel="tag">#<span>Hippocampus</span></a> <a href="https://sigmoid.social/tags/CognitiveMaps" class="mention hashtag" rel="tag">#<span>CognitiveMaps</span></a> <a href="https://sigmoid.social/tags/SequenceLearning" class="mention hashtag" rel="tag">#<span>SequenceLearning</span></a> <a href="https://sigmoid.social/tags/Neuroscience" class="mention hashtag" rel="tag">#<span>Neuroscience</span></a></p>
PLOS Biology<p>Does neuronal information storage involve nanoscopic structural changes at <a href="https://fediscience.org/tags/synapses" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>synapses</span></a>? @olenas_kim &amp;co use nanophysiology &amp; functional EM to reveal structural changes of <a href="https://fediscience.org/tags/hippocampal" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>hippocampal</span></a> <a href="https://fediscience.org/tags/ActiveZones" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>ActiveZones</span></a> during chemical potentiation @ISTAustria <a href="https://fediscience.org/tags/PLOSBiology" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>PLOSBiology</span></a> <a href="https://plos.io/3V22v7h" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="">plos.io/3V22v7h</span><span class="invisible"></span></a></p>
PLOS Biology<p>Modeling the <a href="https://fediscience.org/tags/hippocampus" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>hippocampus</span></a>: @BlueBrainPjt presents a community-based, full-scale in silico model of the rat <a href="https://fediscience.org/tags/hippocampal" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>hippocampal</span></a> CA1 region that integrates diverse experimental data from synapse to network <a href="https://fediscience.org/tags/PLOSBiology" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>PLOSBiology</span></a> <a href="https://plos.io/3ApZgzz" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="">plos.io/3ApZgzz</span><span class="invisible"></span></a></p>
kari hoffman<p>I find this article by Ferro just out in nature communication <a href="https://rdcu.be/dOzT2" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="">rdcu.be/dOzT2</span><span class="invisible"></span></a> is an interesting intersection between value-based decision-making, embodied cognition/active vision, and memory <a href="https://neuromatch.social/tags/reactivation" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>reactivation</span></a> or <a href="https://neuromatch.social/tags/reinstatement" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>reinstatement</span></a>. Looking is doing some heavy lifting. And lookie there, I didn't even mention the <a href="https://neuromatch.social/tags/orbitofrontalcortex" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>orbitofrontalcortex</span></a> recordings they did! </p><p>It caught my eye (sorry) b/c some of the scanpath analysis our lab's done in the past suggests that prior to looking at a remembered, rewarded visual target, there's an uptick in <a href="https://neuromatch.social/tags/hippocampal" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>hippocampal</span></a> <a href="https://neuromatch.social/tags/ripples" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>ripples</span></a> (Leonard et al., Current Biol 2017), which are thought to signal the underlying reactivation of task-relevant activity patterns. And of course, there's work by a number of groups on memory guidance to rewarding/goal targets, that rely on hippocampal function. Ours based on an MTL amnesic: Yoo, et al., (2020). Long-term memory and hippocampal function support predictive gaze control during goal-directed search. Journal of Vision, <a href="https://doi.org/10.1167/jov.20.5.10" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="">doi.org/10.1167/jov.20.5.10</span><span class="invisible"></span></a> following from Chau et al., 2011, and the changes in scanpaths and pupil responses of aging adults and people with Alzheimer's disease, too: Dragan, M. C.,et al., (2017). Behavioural Brain Research, <a href="https://doi.org/10.1016/j.bbr.2016.09.014" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">doi.org/10.1016/j.bbr.2016.09.</span><span class="invisible">014</span></a> </p><p>Where we choose to look says so much: see e.g. Kragel/Voss; Castelhano/Henderson, Wynn/Buchsbaum/Olsen/Ryan esp what Jordana Wynn followed up with on the scanpath reinstatements suggests a really intertwined relationship between memory, eye movements, and learning/decisions about goals. (forgive that I'm missing many others and pls add below!)</p><p>TL;DR The foraging decision-making folks and the memory-guided vision folks need to be increasingly up in each other's business. </p><p>Here's that Ferro link:<br><a href="https://rdcu.be/dOzT2" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="">rdcu.be/dOzT2</span><span class="invisible"></span></a></p><p><span class="h-card" translate="no"><a href="https://a.gup.pe/u/cogneurophys" class="u-url mention" rel="nofollow noopener" target="_blank">@<span>cogneurophys</span></a></span></p>
Norobiik @Norobiik@noc.social<p>They found that each rat <a href="https://noc.social/tags/Hippocampal" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Hippocampal</span></a> synapse can store between 4.1 and 4.6 bits of <a href="https://noc.social/tags/information" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>information</span></a>.</p><p>This means the <a href="https://noc.social/tags/HumanBrain" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>HumanBrain</span></a> may be capable of holding at least a <a href="https://noc.social/tags/petabyte" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>petabyte</span></a> of information, equivalent to the data contained on the entire <a href="https://noc.social/tags/Internet" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Internet</span></a> </p><p>Human brain can hold 10 times more information than previously thought, scientists say<br><a href="https://www.msn.com/en-gb/health/other/human-brain-can-hold-10-times-more-information-than-previously-thought-scientists-say/ar-BB1nO76H?ocid=emmx-mmx-feeds&amp;PC=EMMX01" rel="nofollow noopener" target="_blank"><span class="invisible">https://www.</span><span class="ellipsis">msn.com/en-gb/health/other/hum</span><span class="invisible">an-brain-can-hold-10-times-more-information-than-previously-thought-scientists-say/ar-BB1nO76H?ocid=emmx-mmx-feeds&amp;PC=EMMX01</span></a></p>
Lynn Nadel<p>I'm posting something about memory that I find intriguing - many of you might also find it interesting. The title is "Subjective Experience is a brand new Episodic Memory", and the link is <a href="https://youtu.be/kBDelfotYvE" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="">youtu.be/kBDelfotYvE</span><span class="invisible"></span></a></p><p>Have a look.</p><p><a href="https://neuromatch.social/tags/hippocampus" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>hippocampus</span></a> <br><a href="https://neuromatch.social/tags/hippocampusgurus" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>hippocampusgurus</span></a> <br><a href="https://neuromatch.social/tags/hippocampal" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>hippocampal</span></a></p>
PLOS Biology<p><a href="https://fediscience.org/tags/CrossFrequencyCoupling" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>CrossFrequencyCoupling</span></a> (CFC) in cortico-<a href="https://fediscience.org/tags/hippocampal" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>hippocampal</span></a> networks enables maintenance of multiple visuo-spatial items in <a href="https://fediscience.org/tags/WorkingMemory" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>WorkingMemory</span></a>. This study shows it also extends to <a href="https://fediscience.org/tags/auditory" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>auditory</span></a> info, suggesting CFC as a global mechanism for information processing in the human brain <a href="https://fediscience.org/tags/PLOSBiology" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>PLOSBiology</span></a> <a href="https://plos.io/3uXjhe6" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="">plos.io/3uXjhe6</span><span class="invisible"></span></a></p>
El Duvelle Neuro<p><span class="h-card" translate="no"><a href="https://mastodon.social/@thetransmitter" class="u-url mention" rel="nofollow noopener" target="_blank">@<span>thetransmitter</span></a></span> <br>Oh yes - like this (<a href="https://neuromatch.social/tags/Hippocampal" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Hippocampal</span></a> <a href="https://neuromatch.social/tags/ThetaSequences" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>ThetaSequences</span></a>):<br><a href="https://m.youtube.com/watch?v=IU8wKl5PcLU" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">m.youtube.com/watch?v=IU8wKl5P</span><span class="invisible">cLU</span></a></p><p>Or this (<a href="https://neuromatch.social/tags/HippocampalReplay" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>HippocampalReplay</span></a>):<br><a href="https://m.youtube.com/watch?v=q0kD2RSejRo" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">m.youtube.com/watch?v=q0kD2RSe</span><span class="invisible">jRo</span></a></p><p>(source: <a href="https://neuromatch.social/tags/vanDerMeerLab" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>vanDerMeerLab</span></a>)</p>
Fabrizio Musacchio<p>Fresh new work by Sučević and Schapiro (2023) on A <a href="https://sigmoid.social/tags/NeuralNetwork" class="mention hashtag" rel="tag">#<span>NeuralNetwork</span></a> model of <a href="https://sigmoid.social/tags/hippocampal" class="mention hashtag" rel="tag">#<span>hippocampal</span></a> contributions to category <a href="https://sigmoid.social/tags/learning" class="mention hashtag" rel="tag">#<span>learning</span></a></p><p>🌍 <a href="https://doi.org/10.7554/eLife.77185" target="_blank" rel="nofollow noopener" translate="no"><span class="invisible">https://</span><span class="">doi.org/10.7554/eLife.77185</span><span class="invisible"></span></a></p><p><a href="https://sigmoid.social/tags/CompNeuro" class="mention hashtag" rel="tag">#<span>CompNeuro</span></a> <a href="https://sigmoid.social/tags/Neuroscience" class="mention hashtag" rel="tag">#<span>Neuroscience</span></a> <a href="https://sigmoid.social/tags/modelling" class="mention hashtag" rel="tag">#<span>modelling</span></a> <a href="https://fediscience.org/@ekmiller/111569339907921238" target="_blank" rel="nofollow noopener" translate="no"><span class="invisible">https://</span><span class="ellipsis">fediscience.org/@ekmiller/1115</span><span class="invisible">69339907921238</span></a></p>
Fabrizio Musacchio<p>&quot;<a href="https://sigmoid.social/tags/Hippocampal" class="mention hashtag" rel="tag">#<span>Hippocampal</span></a> neurons reinstate specific episodic memories in humans. These <a href="https://sigmoid.social/tags/EpisodeSpecificNeurons" class="mention hashtag" rel="tag">#<span>EpisodeSpecificNeurons</span></a> are independent of <a href="https://sigmoid.social/tags/ConceptNeurons" class="mention hashtag" rel="tag">#<span>ConceptNeurons</span></a> or <a href="https://sigmoid.social/tags/TimeCells" class="mention hashtag" rel="tag">#<span>TimeCells</span></a> and code the conjunction of elements that make up the event.&quot; according to Luca D. Kolibius (1st author, <a href="https://twitter.com/LucaKolibius/status/1709953380779499696" target="_blank" rel="nofollow noopener" translate="no"><span class="invisible">https://</span><span class="ellipsis">twitter.com/LucaKolibius/statu</span><span class="invisible">s/1709953380779499696</span></a>)</p>
Fabrizio Musacchio<p>There will be a talk by Peter Jonas (ISTAustria) on &quot;<a href="https://sigmoid.social/tags/Synaptic" class="mention hashtag" rel="tag">#<span>Synaptic</span></a> mechanisms of <a href="https://sigmoid.social/tags/patterncompletion" class="mention hashtag" rel="tag">#<span>patterncompletion</span></a> in the <a href="https://sigmoid.social/tags/hippocampal" class="mention hashtag" rel="tag">#<span>hippocampal</span></a> <a href="https://sigmoid.social/tags/CA3" class="mention hashtag" rel="tag">#<span>CA3</span></a> region&quot;:</p><p>⏰ Thu July 27 at 4.15pm CEST<br />🌎 <a href="https://t.co/tlk4CorzwE" target="_blank" rel="nofollow noopener" translate="no"><span class="invisible">https://</span><span class="">t.co/tlk4CorzwE</span><span class="invisible"></span></a><br />📍 University of <a href="https://sigmoid.social/tags/T%C3%BCbingen" class="mention hashtag" rel="tag">#<span>Tübingen</span></a>, Hertie-Institut für klinische Hirnforschung (HIH), Host: Ulrike Hedrich</p><p><a href="https://sigmoid.social/tags/neuroscience" class="mention hashtag" rel="tag">#<span>neuroscience</span></a></p>
Fabrizio Musacchio<p>Rethinking the <a href="https://sigmoid.social/tags/hippocampal" class="mention hashtag" rel="tag">#<span>hippocampal</span></a> <a href="https://sigmoid.social/tags/cognitivemap" class="mention hashtag" rel="tag">#<span>cognitivemap</span></a> as a <a href="https://sigmoid.social/tags/metalearning" class="mention hashtag" rel="tag">#<span>metalearning</span></a> computational module – New publication by Luca Ambrogioni &amp; <br />H. Freyja Ólafsdóttir (2023)</p><p>📔 <a href="https://doi.org/10.1016/j.tics.2023.05.011" target="_blank" rel="nofollow noopener" translate="no"><span class="invisible">https://</span><span class="ellipsis">doi.org/10.1016/j.tics.2023.05</span><span class="invisible">.011</span></a></p><p><a href="https://sigmoid.social/tags/computationalneuroscience" class="mention hashtag" rel="tag">#<span>computationalneuroscience</span></a> <a href="https://sigmoid.social/tags/learning" class="mention hashtag" rel="tag">#<span>learning</span></a></p>