sigmoid.social is one of the many independent Mastodon servers you can use to participate in the fediverse.
A social space for people researching, working with, or just interested in AI!

Server stats:

599
active users

#spherepacking

0 posts0 participants0 posts today
Soh Kam Yung<p>"In higher dimensions, mathematicians still don’t know the answer [to the sphere packing problem.] [...] Now, in a short manuscript posted online in April, the mathematician Boaz Klartag has bested these previous records by a significant margin. Some researchers even believe his result might be close to optimal."</p><p><a href="https://www.quantamagazine.org/new-sphere-packing-record-stems-from-an-unexpected-source-20250707/" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://www.</span><span class="ellipsis">quantamagazine.org/new-sphere-</span><span class="invisible">packing-record-stems-from-an-unexpected-source-20250707/</span></a></p><p><a href="https://mstdn.io/tags/Mathematics" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Mathematics</span></a> <a href="https://mstdn.io/tags/Problems" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Problems</span></a> <a href="https://mstdn.io/tags/SpherePacking" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>SpherePacking</span></a> <a href="https://mstdn.io/tags/Geometry" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Geometry</span></a></p>
Hacker News<p>New Sphere-Packing Record Stems from an Unexpected Source</p><p><a href="https://www.quantamagazine.org/new-sphere-packing-record-stems-from-an-unexpected-source-20250707/" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://www.</span><span class="ellipsis">quantamagazine.org/new-sphere-</span><span class="invisible">packing-record-stems-from-an-unexpected-source-20250707/</span></a></p><p><a href="https://mastodon.social/tags/HackerNews" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>HackerNews</span></a> <a href="https://mastodon.social/tags/SpherePacking" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>SpherePacking</span></a> <a href="https://mastodon.social/tags/SpherePackingRecord" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>SpherePackingRecord</span></a> <a href="https://mastodon.social/tags/Mathematics" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Mathematics</span></a> <a href="https://mastodon.social/tags/UnexpectedSource" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>UnexpectedSource</span></a> <a href="https://mastodon.social/tags/QuantumPhysics" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>QuantumPhysics</span></a></p>
Jesus Margar<p>I just read the sentence "the theory of Mordell–Weil lattices provide the best sphere packing in some dimensions such as 80, 104, 128, 256, 512" and it has made me think on all those times when I was trying to pack 512-dimensional oranges and I just couldn't figure out an optimal way.</p><p><a href="https://mastodon.social/tags/maths" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>maths</span></a> <a href="https://mastodon.social/tags/spheres" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>spheres</span></a> <a href="https://mastodon.social/tags/spherepacking" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>spherepacking</span></a> <a href="https://mastodon.social/tags/geometry" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>geometry</span></a> <a href="https://mastodon.social/tags/joke" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>joke</span></a></p>
Alex vd Brandhof<p>For the Dutch newspaper <a href="https://mathstodon.xyz/tags/NRC" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>NRC</span></a> I wrote a piece about the new lower bound for <a href="https://mathstodon.xyz/tags/spherepacking" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>spherepacking</span></a>, found by Marcelo Campos, Matthew Jenssen, Marcus Michelen, and Julian Sahasrabudhe. With a proof that \( \frac1n \) is a lower bound for the density in dimension \(n\) (it's trivial for mathematicians, but for other people it is interesting, I hope). As a bonus I end with a quote from Terence <span class="h-card" translate="no"><a href="https://mathstodon.xyz/@tao" class="u-url mention" rel="nofollow noopener" target="_blank">@<span>tao</span></a></span> !</p>
Alex vd Brandhof<p>Bollen verpakken in hoge dimensies. Mijn nieuwste artikel voor <a href="https://mathstodon.xyz/tags/nrc" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>nrc</span></a>. Met formules! En met een bewijs! <a href="https://mathstodon.xyz/tags/spherepacking" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>spherepacking</span></a> (paywall) <a href="https://www.nrc.nl/nieuws/2023/12/28/de-kerstballen-gaan-terug-in-de-doos-hoe-doe-je-dat-efficient-in-hogerdimensionale-ruimtes-a4185455" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://www.</span><span class="ellipsis">nrc.nl/nieuws/2023/12/28/de-ke</span><span class="invisible">rstballen-gaan-terug-in-de-doos-hoe-doe-je-dat-efficient-in-hogerdimensionale-ruimtes-a4185455</span></a> <a href="https://www.nrc.nl/nieuws/2023/12/28/de-kerstballen-gaan-terug-in-de-doos-hoe-doe-je-dat-efficient-in-hogerdimensionale-ruimtes-a4185455" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://www.</span><span class="ellipsis">nrc.nl/nieuws/2023/12/28/de-ke</span><span class="invisible">rstballen-gaan-terug-in-de-doos-hoe-doe-je-dat-efficient-in-hogerdimensionale-ruimtes-a4185455</span></a></p>