sigmoid.social is one of the many independent Mastodon servers you can use to participate in the fediverse.
A social space for people researching, working with, or just interested in AI!

Server stats:

588
active users

#axons

0 posts0 participants0 posts today
PLOS Biology<p>Why is neuronal repolarization during <a href="https://fediscience.org/tags/ActionPotentials" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>ActionPotentials</span></a> so uniform despite ~10x range in axonal diameter? Study shows that higher K+ currents in smaller <a href="https://fediscience.org/tags/axons" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>axons</span></a> compensate for biophys constraints, resulting in size-independent trigger signals <a href="https://fediscience.org/tags/PLOSBiology" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>PLOSBiology</span></a> <a href="https://plos.io/3ZzJvzE" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="">plos.io/3ZzJvzE</span><span class="invisible"></span></a></p>
Albert Cardona<p><span class="h-card" translate="no"><a href="https://flipboard.com/@SciMag" class="u-url mention" rel="nofollow noopener" target="_blank">@<span>SciMag</span></a></span> <span class="h-card" translate="no"><a href="https://flipboard.com/@scimag/news-from-science-dgvs7ea7z" class="u-url mention" rel="nofollow noopener" target="_blank">@<span>news-from-science-SciMag</span></a></span></p><p>A major criticism is that the technique of high-pressure freezing only handles very small volumes at most 200 micrometers thick, and therefore, the tissue being from a mouse brain, a significant amount of injury to neuronal arbours was caused to generate such small samples.</p><p>Three kinds of samples were used:<br>(1) Cell culture neurons, which have their own problems and can't be considered authoritative on neuronal morphology. <br>(2) Hippocampal slices, which do recover from sectioning when in the right culture medium but only to some extent. Most neurons exist as fragments in the slice. Artifacts in morphologies are expected.<br>(3) Acutely extracted brain bits can't be immediately frozen; even a second is enough for neurons to fire and osmolarity to shape neuronal morphologies away from the natural state.</p><p>In summary: while surely neurons in their natural state don't look like those in textbooks, since all sample preparations suffer from artifacts, I am not convinced that this study resolves the issue. Try to freeze a small animal – like it's been done for C. elegans. Do these peculiar axon morphologies exist in the HFP'ed worm?</p><p>The authors themselves admit that:<br>"treatments that disrupt these parameters like hyper- or hypo-tonic solutions, cholesterol removal, and non-muscle myosin II inhibition all alter the degree of axon pearling" – and all of these come into play during sample preparation.</p><p>Preprint: <a href="https://www.biorxiv.org/content/10.1101/2023.07.20.549958v1.full" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://www.</span><span class="ellipsis">biorxiv.org/content/10.1101/20</span><span class="invisible">23.07.20.549958v1.full</span></a></p><p>As published: <a href="https://www.nature.com/articles/s41593-024-01813-1" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://www.</span><span class="ellipsis">nature.com/articles/s41593-024</span><span class="invisible">-01813-1</span></a></p><p>I wish the reviews were published. Andreas Prokop, a neuroscientist working on microtubules in neurons, was involved, which is reassuring.</p><p><a href="https://mathstodon.xyz/tags/neuroscience" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>neuroscience</span></a> <a href="https://mathstodon.xyz/tags/morphology" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>morphology</span></a> <a href="https://mathstodon.xyz/tags/neurons" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>neurons</span></a> <a href="https://mathstodon.xyz/tags/pearling" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>pearling</span></a> <a href="https://mathstodon.xyz/tags/axons" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>axons</span></a></p>
Scientific Frontline<p><a href="https://mastodon.social/tags/Nerve" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Nerve</span></a> <a href="https://mastodon.social/tags/cells" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>cells</span></a> (<a href="https://mastodon.social/tags/neurons" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>neurons</span></a> ) are amongst the most complex cell types in our body. They achieve this complexity during development by extending ramified branches called <a href="https://mastodon.social/tags/dendrites" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>dendrites</span></a> and <a href="https://mastodon.social/tags/axons" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>axons</span></a> and establishing thousands of synapses to form intricate networks.<br><a href="https://mastodon.social/tags/Neuroscience" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Neuroscience</span></a> <a href="https://mastodon.social/tags/sflorg" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>sflorg</span></a><br><a href="https://www.sflorg.com/2024/04/ns04082401.html" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://www.</span><span class="ellipsis">sflorg.com/2024/04/ns04082401.</span><span class="invisible">html</span></a></p>
katch wreck<p>"We show that migrating <a href="https://mastodon.social/tags/neurons" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>neurons</span></a> in mice possess a growth cone at the tip of their leading process, similar to that of <a href="https://mastodon.social/tags/axons" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>axons</span></a>, in terms of the <a href="https://mastodon.social/tags/cytoskeletal" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>cytoskeletal</span></a> dynamics and functional responsivity through protein tyrosine <a href="https://mastodon.social/tags/phosphatase" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>phosphatase</span></a> receptor type sigma (PTPσ). Migrating-neuron growth cones respond to chondroitin sulfate (CS) through PTPσ and collapse, which leads to inhibition of <a href="https://mastodon.social/tags/neuronal" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>neuronal</span></a> migration."</p><p><a href="https://www.nature.com/articles/s41467-024-45825-8" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://www.</span><span class="ellipsis">nature.com/articles/s41467-024</span><span class="invisible">-45825-8</span></a></p>
:rss: Hacker News<p>Short-term Hebbian learning can implement transformer-like attention<br><a href="https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1011843" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">journals.plos.org/ploscompbiol</span><span class="invisible">/article?id=10.1371/journal.pcbi.1011843</span></a><br><a href="https://rss-mstdn.studiofreesia.com/tags/ycombinator" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>ycombinator</span></a> <a href="https://rss-mstdn.studiofreesia.com/tags/Action_potentials" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Action_potentials</span></a> <a href="https://rss-mstdn.studiofreesia.com/tags/Neuronal_dendrites" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Neuronal_dendrites</span></a> <a href="https://rss-mstdn.studiofreesia.com/tags/Axons" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Axons</span></a> <a href="https://rss-mstdn.studiofreesia.com/tags/Neurons" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Neurons</span></a> <a href="https://rss-mstdn.studiofreesia.com/tags/Synapses" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Synapses</span></a> <a href="https://rss-mstdn.studiofreesia.com/tags/Machine_learning" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Machine_learning</span></a> <a href="https://rss-mstdn.studiofreesia.com/tags/Calcium_channels" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Calcium_channels</span></a> <a href="https://rss-mstdn.studiofreesia.com/tags/Ion_channels" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Ion_channels</span></a></p>
katch wreck<p>`<a href="https://mastodon.social/tags/Oligodendrocytes" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Oligodendrocytes</span></a> (from Greek 'cells with a few branches'), also known as oligodendroglia, are a type of <a href="https://mastodon.social/tags/neuroglia" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>neuroglia</span></a> whose main functions are to provide support and insulation to <a href="https://mastodon.social/tags/axons" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>axons</span></a> within the central nervous system (CNS) of jawed vertebrates. Their function is similar to that of Schwann cells, which perform the same task in the peripheral nervous system`</p><p> <a href="https://en.wikipedia.org/wiki/Oligodendrocyte" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">en.wikipedia.org/wiki/Oligoden</span><span class="invisible">drocyte</span></a></p>
Andreas Prokop<p><a href="https://mastodon.online/tags/introduction" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>introduction</span></a>. I am a neuro/cell/dev biologist investigating how the delicate meter-long slender processes of neurons, i.e. the <a href="https://mastodon.online/tags/axons" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>axons</span></a> that form the cables wiring our nervous system, can be maintained for a century (or fail in neurodegeneration). As an efficient strategy, I use genetics and neurons of the fruitfly <a href="https://mastodon.online/tags/Drosophila" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Drosophila</span></a> able to deal with the enormous complexity at play (image). For many years I have engaged in <a href="https://mastodon.online/tags/scicomm" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>scicomm</span></a> promoting the importance of fly research (<a href="https://poppi62.wordpress.com/publications/" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">poppi62.wordpress.com/publicat</span><span class="invisible">ions/</span></a>)</p>