Pustam | पुस्तम | পুস্তম🇳🇵<p>Basel Problem: \(1/1^2 + 1/2^2+ 1/3^2 + 1/4^2+ \cdots = ?\)</p><p>Some of the brightest mathematicians, like Newton, Leibniz and (Jacob) Bernoulli, struggled with this simple series. </p><p>It was only in \(1734\) that Euler, at the age of \(27\), found that this infinite series converged to \(\pi^2/6\).<br>\[\displaystyle\dfrac{1}{1^2}+\dfrac{1}{2^2}+\dfrac{1}{3^2}+\cdots=\dfrac{\pi^2}{6}\]</p><p><a href="https://mathstodon.xyz/tags/Euler" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Euler</span></a> <a href="https://mathstodon.xyz/tags/Leibniz" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Leibniz</span></a> <a href="https://mathstodon.xyz/tags/Newton" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Newton</span></a> <a href="https://mathstodon.xyz/tags/Bernoulli" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Bernoulli</span></a> <a href="https://mathstodon.xyz/tags/JacobBernoulli" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>JacobBernoulli</span></a> <a href="https://mathstodon.xyz/tags/LeonhardEuler" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>LeonhardEuler</span></a> <a href="https://mathstodon.xyz/tags/BaselProblem" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>BaselProblem</span></a> <a href="https://mathstodon.xyz/tags/ZetaFunction" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>ZetaFunction</span></a> <a href="https://mathstodon.xyz/tags/MathHistory" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>MathHistory</span></a></p>