sigmoid.social is one of the many independent Mastodon servers you can use to participate in the fediverse.
A social space for people researching, working with, or just interested in AI!

Server stats:

672
active users

#dftk

0 posts0 participants0 posts today
MatMat<p><span class="h-card" translate="no"><a href="https://social.epfl.ch/@schmitz" class="u-url mention" rel="nofollow noopener noreferrer" target="_blank">@<span>schmitz</span></a></span> (left) explaining his recent work on making <a href="https://social.epfl.ch/tags/dftk" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>dftk</span></a> algorithmically <a href="https://social.epfl.ch/tags/differentiable" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>differentiable</span></a> at the <a href="https://social.epfl.ch/tags/cecam" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>cecam</span></a> workshop on <a href="https://social.epfl.ch/tags/dft" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>dft</span></a> and <a href="https://social.epfl.ch/tags/ai" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>ai</span></a> (<a href="https://www.cecam.org/workshop-details/1281" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://www.</span><span class="ellipsis">cecam.org/workshop-details/128</span><span class="invisible">1</span></a>). With his work derivatives of key density-functional theory quantities like forces or band structures wrt. model parameters can now be easily computed.</p>
Michael Herbst<p>Hello <a href="https://social.epfl.ch/tags/fediverse" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>fediverse</span></a> <a href="https://social.epfl.ch/tags/introduction" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>introduction</span></a></p><p>I'm Michael, professor in the institutes of <a href="https://social.epfl.ch/tags/mathematics" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>mathematics</span></a> and <a href="https://social.epfl.ch/tags/materials" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>materials</span></a> science and head of the <span class="h-card" translate="no"><a href="https://social.epfl.ch/@MatMat" class="u-url mention" rel="nofollow noopener noreferrer" target="_blank">@<span>MatMat</span></a></span> group at <a href="https://social.epfl.ch/tags/EPFL" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>EPFL</span></a>.</p><p>I work on the <a href="https://social.epfl.ch/tags/atomistic" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>atomistic</span></a> simulations of materials, mainly density-functional theory (DFT) methods, understanding <a href="https://social.epfl.ch/tags/simulation" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>simulation</span></a> errors and <a href="https://social.epfl.ch/tags/uncertainties" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>uncertainties</span></a> in predicted materials properties.</p><p>I use techniques from <br><a href="https://social.epfl.ch/tags/physics" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>physics</span></a> <a href="https://social.epfl.ch/tags/computerscience" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>computerscience</span></a> <a href="https://social.epfl.ch/tags/machinelearning" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>machinelearning</span></a> and <br>develop related <a href="https://social.epfl.ch/tags/julia" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>julia</span></a> packages such as the density-functional toolkit (<a href="https://social.epfl.ch/tags/dftk" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>dftk</span></a>).</p>