sigmoid.social is one of the many independent Mastodon servers you can use to participate in the fediverse.
A social space for people researching, working with, or just interested in AI!

Server stats:

588
active users

#disentangled

0 posts0 participants0 posts today
Manuel Baltieri<p>We are delighted to share our paper “Disentangled Representations for Causal Cognition” (arxiv.org/abs/2407.00744), the outcome of a long collaboration with Filippo Torresan.</p><p>The paper proposes a computational framework for causal cognition in natural and artificial agents, drawing from recent work in causal machine learning (in part based on recent developments of Markov categories in applied category theory) and reinforcement learning.</p><p><a href="https://mathstodon.xyz/tags/causality" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>causality</span></a> <a href="https://mathstodon.xyz/tags/machinelearning" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>machinelearning</span></a> <a href="https://mathstodon.xyz/tags/disentanglement" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>disentanglement</span></a> <a href="https://mathstodon.xyz/tags/disentangled" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>disentangled</span></a> <a href="https://mathstodon.xyz/tags/representation" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>representation</span></a> <a href="https://mathstodon.xyz/tags/cognition" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>cognition</span></a> <a href="https://mathstodon.xyz/tags/cognitivescience" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>cognitivescience</span></a></p>
JMLR<p>&#39;Be More Active! Understanding the Differences Between Mean and Sampled Representations of Variational Autoencoders&#39;, by Lisa Bonheme, Marek Grzes.</p><p><a href="http://jmlr.org/papers/v24/21-1145.html" target="_blank" rel="nofollow noopener" translate="no"><span class="invisible">http://</span><span class="ellipsis">jmlr.org/papers/v24/21-1145.ht</span><span class="invisible">ml</span></a> <br /> <br /><a href="https://sigmoid.social/tags/autoencoders" class="mention hashtag" rel="tag">#<span>autoencoders</span></a> <a href="https://sigmoid.social/tags/disentangled" class="mention hashtag" rel="tag">#<span>disentangled</span></a> <a href="https://sigmoid.social/tags/representations" class="mention hashtag" rel="tag">#<span>representations</span></a></p>