sigmoid.social is one of the many independent Mastodon servers you can use to participate in the fediverse.
A social space for people researching, working with, or just interested in AI!

Server stats:

533
active users

#GenerativeAdversarialNetworks

0 posts0 participants0 posts today
IT News<p>Fake AI law firms are sending fake DMCA threats to generate fake SEO gains - Enlarge / A person made of many parts, similar to the attorney who hand... - <a href="https://arstechnica.com/?p=2014933" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="">arstechnica.com/?p=2014933</span><span class="invisible"></span></a> <a href="https://schleuss.online/tags/generativeadversarialnetworks" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>generativeadversarialnetworks</span></a> <a href="https://schleuss.online/tags/artificialintelligence" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>artificialintelligence</span></a> <a href="https://schleuss.online/tags/aigeneration" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>aigeneration</span></a> <a href="https://schleuss.online/tags/generativeai" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>generativeai</span></a> <a href="https://schleuss.online/tags/backlinks" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>backlinks</span></a> <a href="https://schleuss.online/tags/dmcaabuse" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>dmcaabuse</span></a> <a href="https://schleuss.online/tags/biz" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>biz</span></a>⁢ <a href="https://schleuss.online/tags/tech" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>tech</span></a> <a href="https://schleuss.online/tags/dmca" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>dmca</span></a> <a href="https://schleuss.online/tags/seo" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>seo</span></a> <a href="https://schleuss.online/tags/ai" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>ai</span></a></p>
Fabrizio Musacchio<p>I was curious whether it would be possible to let <a href="https://sigmoid.social/tags/GANs" class="mention hashtag" rel="tag">#<span>GANs</span></a> generate samples conditioned on a specific input type. I wanted the GAN to generate samples of a specific digit, resembling a personal poor man’s mini <a href="https://sigmoid.social/tags/DALLE" class="mention hashtag" rel="tag">#<span>DALLE</span></a> 😅. And indeed, I found a GAN architecture, that allows so-called <a href="https://sigmoid.social/tags/ConditionalGANs" class="mention hashtag" rel="tag">#<span>ConditionalGANs</span></a> 💫</p><p>🌎 <a href="https://www.fabriziomusacchio.com/blog/2023-07-30-cgan/" target="_blank" rel="nofollow noopener" translate="no"><span class="invisible">https://www.</span><span class="ellipsis">fabriziomusacchio.com/blog/202</span><span class="invisible">3-07-30-cgan/</span></a></p><p><a href="https://sigmoid.social/tags/MachineLearning" class="mention hashtag" rel="tag">#<span>MachineLearning</span></a> <a href="https://sigmoid.social/tags/GenerativeAdversarialNetworks" class="mention hashtag" rel="tag">#<span>GenerativeAdversarialNetworks</span></a></p>
Fabrizio Musacchio<p>The <a href="https://sigmoid.social/tags/Wasserstein" class="mention hashtag" rel="tag">#<span>Wasserstein</span></a> <a href="https://sigmoid.social/tags/metric" class="mention hashtag" rel="tag">#<span>metric</span></a> (<a href="https://sigmoid.social/tags/EMD" class="mention hashtag" rel="tag">#<span>EMD</span></a>) can be used, to train <a href="https://sigmoid.social/tags/GenerativeAdversarialNetworks" class="mention hashtag" rel="tag">#<span>GenerativeAdversarialNetworks</span></a> (<a href="https://sigmoid.social/tags/GANs" class="mention hashtag" rel="tag">#<span>GANs</span></a>) more effectively. This tutorial compares a default GAN with a <a href="https://sigmoid.social/tags/WassersteinGAN" class="mention hashtag" rel="tag">#<span>WassersteinGAN</span></a> (<a href="https://sigmoid.social/tags/WGAN" class="mention hashtag" rel="tag">#<span>WGAN</span></a>) trained on the <a href="https://sigmoid.social/tags/MNIST" class="mention hashtag" rel="tag">#<span>MNIST</span></a> dataset.</p><p>🌎 <a href="https://www.fabriziomusacchio.com/blog/2023-07-29-wgan/" target="_blank" rel="nofollow noopener" translate="no"><span class="invisible">https://www.</span><span class="ellipsis">fabriziomusacchio.com/blog/202</span><span class="invisible">3-07-29-wgan/</span></a></p><p><a href="https://sigmoid.social/tags/MachineLearning" class="mention hashtag" rel="tag">#<span>MachineLearning</span></a></p>
Chucky Schuster<p>Milky Way - lactose is everywhere.<br />Even in our galaxy.<br /><a href="https://sigmoid.social/tags/digitalArt" class="mention hashtag" rel="tag">#<span>digitalArt</span></a> <a href="https://sigmoid.social/tags/aiart" class="mention hashtag" rel="tag">#<span>aiart</span></a> <a href="https://sigmoid.social/tags/newmediaart" class="mention hashtag" rel="tag">#<span>newmediaart</span></a> <a href="https://sigmoid.social/tags/digitalArt" class="mention hashtag" rel="tag">#<span>digitalArt</span></a> <a href="https://sigmoid.social/tags/midjourney" class="mention hashtag" rel="tag">#<span>midjourney</span></a> <a href="https://sigmoid.social/tags/generativeadversarialnetworks" class="mention hashtag" rel="tag">#<span>generativeadversarialnetworks</span></a> <a href="https://sigmoid.social/tags/surrealism" class="mention hashtag" rel="tag">#<span>surrealism</span></a> <a href="https://sigmoid.social/tags/DarkAesthetic" class="mention hashtag" rel="tag">#<span>DarkAesthetic</span></a> <a href="https://sigmoid.social/tags/milkyway" class="mention hashtag" rel="tag">#<span>milkyway</span></a> <a href="https://sigmoid.social/tags/ai" class="mention hashtag" rel="tag">#<span>ai</span></a></p>
J. de Curtò<p>New preprint: Signature and Log-signature for the Study of Empirical Distributions Generated with GANs <a href="https://sigmoid.social/tags/GenerativeAdversarialNetworks" class="mention hashtag" rel="tag">#<span>GenerativeAdversarialNetworks</span></a> <a href="https://sigmoid.social/tags/SignatureTransform" class="mention hashtag" rel="tag">#<span>SignatureTransform</span></a><br /><a href="https://arxiv.org/abs/2203.03226" target="_blank" rel="nofollow noopener" translate="no"><span class="invisible">https://</span><span class="">arxiv.org/abs/2203.03226</span><span class="invisible"></span></a></p>