sigmoid.social is one of the many independent Mastodon servers you can use to participate in the fediverse.
A social space for people researching, working with, or just interested in AI!

Server stats:

654
active users

#hierarchical

0 posts0 participants0 posts today
💧🌏 Greg Cocks<p>Observations Reveal Changing Coastal Storm Extremes Around The United States<br>--<br><a href="https://doi.org/10.1038/s41558-025-02315-z" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">doi.org/10.1038/s41558-025-023</span><span class="invisible">15-z</span></a> &lt;-- shared paper<br>--<br><a href="https://techhub.social/tags/GIS" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>GIS</span></a> <a href="https://techhub.social/tags/spatial" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>spatial</span></a> <a href="https://techhub.social/tags/mapping" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>mapping</span></a> <a href="https://techhub.social/tags/extremeweather" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>extremeweather</span></a> <a href="https://techhub.social/tags/coast" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>coast</span></a> <a href="https://techhub.social/tags/coastal" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>coastal</span></a> <a href="https://techhub.social/tags/spatialanalysis" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>spatialanalysis</span></a> <a href="https://techhub.social/tags/spatiotemporal" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>spatiotemporal</span></a> <a href="https://techhub.social/tags/model" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>model</span></a> <a href="https://techhub.social/tags/modeling" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>modeling</span></a> <a href="https://techhub.social/tags/communities" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>communities</span></a> <a href="https://techhub.social/tags/publicsafety" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>publicsafety</span></a> <a href="https://techhub.social/tags/climatechange" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>climatechange</span></a> <a href="https://techhub.social/tags/stormsurge" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>stormsurge</span></a> <a href="https://techhub.social/tags/USA" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>USA</span></a> <a href="https://techhub.social/tags/flood" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>flood</span></a> <a href="https://techhub.social/tags/flooding" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>flooding</span></a> <a href="https://techhub.social/tags/risk" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>risk</span></a> <a href="https://techhub.social/tags/hazard" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>hazard</span></a> <a href="https://techhub.social/tags/damage" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>damage</span></a> <a href="https://techhub.social/tags/infrastructure" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>infrastructure</span></a> <a href="https://techhub.social/tags/cost" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>cost</span></a> <a href="https://techhub.social/tags/economics" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>economics</span></a> <a href="https://techhub.social/tags/mitigation" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>mitigation</span></a> <a href="https://techhub.social/tags/insurance" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>insurance</span></a> <a href="https://techhub.social/tags/sealevel" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>sealevel</span></a> <a href="https://techhub.social/tags/SLR" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>SLR</span></a> <a href="https://techhub.social/tags/sealevelrise" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>sealevelrise</span></a> <a href="https://techhub.social/tags/Bayesian" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Bayesian</span></a> <a href="https://techhub.social/tags/hierarchical" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>hierarchical</span></a> <a href="https://techhub.social/tags/framework" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>framework</span></a> <a href="https://techhub.social/tags/tideguage" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>tideguage</span></a> <a href="https://techhub.social/tags/tide" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>tide</span></a> <a href="https://techhub.social/tags/tidal" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>tidal</span></a> <a href="https://techhub.social/tags/water" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>water</span></a> <a href="https://techhub.social/tags/hydrology" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>hydrology</span></a> <a href="https://techhub.social/tags/hydrography" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>hydrography</span></a> <a href="https://techhub.social/tags/extremes" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>extremes</span></a> <a href="https://techhub.social/tags/intensity" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>intensity</span></a> <a href="https://techhub.social/tags/monitoring" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>monitoring</span></a></p>
Don Curren 🇨🇦🇺🇦<p>“Fascist <a class="hashtag" href="https://bsky.app/search?q=%23politics" rel="nofollow noopener noreferrer" target="_blank">#politics</a> feeds off the sense of aggrieved <a class="hashtag" href="https://bsky.app/search?q=%23victimization" rel="nofollow noopener noreferrer" target="_blank">#victimization</a> caused by loss of <a class="hashtag" href="https://bsky.app/search?q=%23hierarchical" rel="nofollow noopener noreferrer" target="_blank">#hierarchical</a> status. <a class="hashtag" href="https://bsky.app/search?q=%23Empires" rel="nofollow noopener noreferrer" target="_blank">#Empires</a> are particularly susceptible to <a class="hashtag" href="https://bsky.app/search?q=%23fascist" rel="nofollow noopener noreferrer" target="_blank">#fascist</a> politics because of this sense of loss.” - <a class="hashtag" href="https://bsky.app/search?q=%23JasonStanley" rel="nofollow noopener noreferrer" target="_blank">#JasonStanley</a>, How <a class="hashtag" href="https://bsky.app/search?q=%23Fascism" rel="nofollow noopener noreferrer" target="_blank">#Fascism</a> Works: The <a class="hashtag" href="https://bsky.app/search?q=%23Politics" rel="nofollow noopener noreferrer" target="_blank">#Politics</a> of Us and Them</p>
JMLR<p>&#39;An Axiomatic Definition of Hierarchical Clustering&#39;, by Ery Arias-Castro, Elizabeth Coda.</p><p><a href="http://jmlr.org/papers/v26/24-1052.html" target="_blank" rel="nofollow noopener noreferrer" translate="no"><span class="invisible">http://</span><span class="ellipsis">jmlr.org/papers/v26/24-1052.ht</span><span class="invisible">ml</span></a> <br /> <br /><a href="https://sigmoid.social/tags/cluster" class="mention hashtag" rel="tag">#<span>cluster</span></a> <a href="https://sigmoid.social/tags/clustering" class="mention hashtag" rel="tag">#<span>clustering</span></a> <a href="https://sigmoid.social/tags/hierarchical" class="mention hashtag" rel="tag">#<span>hierarchical</span></a></p>
Chuck Darwin<p><a href="https://c.im/tags/Epic" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Epic</span></a> <a href="https://c.im/tags/Systems" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Systems</span></a> epitomizes everything perverse about the commercialized mess that American medicine has become. </p><p>“Epic’s clients are not doctors. <br>They are the CEOs and CFOs who write the checks to Epic,” says Dr. Bill Stead, who created pioneering <a href="https://c.im/tags/electronic" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>electronic</span></a> <a href="https://c.im/tags/health" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>health</span></a> <a href="https://c.im/tags/record" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>record</span></a> systems at Duke and then at Vanderbilt University Medical Center, <br>both eventually supplanted by Epic.</p><p>Epic became the dominant vendor of databases because it was better than anyone else at combining regulatory compliance with 🔸maximizing hospital income. <br>Epic enables the hospital to maximize the use of codes that determine the payment. <br>“Before Epic, nobody was able to systematize upcoding,” says an executive of one hospital system.<br>🔥Epic’s software can enable doctors and hospitals to overcharge patients, insurers, and Medicare and Medicaid.</p><p>There are about 10,000 possible billing codes that indicate conditions and complications. <br>These <a href="https://c.im/tags/Hierarchical" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Hierarchical</span></a> <a href="https://c.im/tags/Condition" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Condition</span></a> <a href="https://c.im/tags/Category" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Category</span></a> (HCC) codes allow increased payments based on risk. <br>For instance, diabetes with no complications, HCC code 19, pays a capitation rate of $894.40 -- while diabetes combined with kidney failure can use 2 HCC codes, 18 and 136, <br>which increases the capitation rate to $1,273.60. <br>Doctors have the ability to also use codes for past patient conditions that have nothing to do with current presenting symptoms.</p><p>Assigning codes to each patient health malady is more of an art or artifice than a science, where doctors’ judgment calls can bleed into Medicare fraud. </p><p>Payments are based partly on time spent with a patient, on a scale from 1 to 5. <br>One doctor told me that her supervisor, who gets reports from Epic on her billing practices, regularly contacts her and says things like “That appointment was a 2. Don’t you think it might be a 3?”</p><p>Epic’s software can thus enable doctors and hospitals to overcharge patients, insurers, and government agencies such as Medicare and Medicaid. <br>Before a doctor can complete the record of a patient visit, they must respond to every question and check every required box. <br>🆘 Hospitals have financial incentives to make patients look sicker so that they can maximize revenue, and Epic’s software facilitates this.</p><p><a href="https://prospect.org/health/2024-10-01-epic-dystopia/" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">prospect.org/health/2024-10-01</span><span class="invisible">-epic-dystopia/</span></a></p>
JMLR<p>&#39;An Entropy-Based Model for Hierarchical Learning&#39;, by Amir R. Asadi.</p><p><a href="http://jmlr.org/papers/v25/23-0096.html" target="_blank" rel="nofollow noopener noreferrer" translate="no"><span class="invisible">http://</span><span class="ellipsis">jmlr.org/papers/v25/23-0096.ht</span><span class="invisible">ml</span></a> <br /> <br /><a href="https://sigmoid.social/tags/supervised" class="mention hashtag" rel="tag">#<span>supervised</span></a> <a href="https://sigmoid.social/tags/hierarchical" class="mention hashtag" rel="tag">#<span>hierarchical</span></a> <a href="https://sigmoid.social/tags/multiscale" class="mention hashtag" rel="tag">#<span>multiscale</span></a></p>
:rss: Hacker News<p>Direct pixel-space megapixel image generation with diffusion models<br><a href="https://crowsonkb.github.io/hourglass-diffusion-transformers/" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">crowsonkb.github.io/hourglass-</span><span class="invisible">diffusion-transformers/</span></a><br><a href="https://rss-mstdn.studiofreesia.com/tags/ycombinator" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>ycombinator</span></a> <a href="https://rss-mstdn.studiofreesia.com/tags/Diffusion" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Diffusion</span></a> <a href="https://rss-mstdn.studiofreesia.com/tags/Machine_Learning" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Machine_Learning</span></a> <a href="https://rss-mstdn.studiofreesia.com/tags/Generative_Models" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Generative_Models</span></a> <a href="https://rss-mstdn.studiofreesia.com/tags/Generative_AI" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Generative_AI</span></a> <a href="https://rss-mstdn.studiofreesia.com/tags/Megapixel" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Megapixel</span></a> <a href="https://rss-mstdn.studiofreesia.com/tags/High_resolution" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>High_resolution</span></a> <a href="https://rss-mstdn.studiofreesia.com/tags/Image_Synthesis" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Image_Synthesis</span></a> <a href="https://rss-mstdn.studiofreesia.com/tags/Transformer" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Transformer</span></a> <a href="https://rss-mstdn.studiofreesia.com/tags/Neighborhood_Attention" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Neighborhood_Attention</span></a> <a href="https://rss-mstdn.studiofreesia.com/tags/Local_Attention" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Local_Attention</span></a> <a href="https://rss-mstdn.studiofreesia.com/tags/Hierarchical" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Hierarchical</span></a> <a href="https://rss-mstdn.studiofreesia.com/tags/Pixel_space" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Pixel_space</span></a></p>
:rss: Hacker News<p>Direct Pixel-Space Megapixel Image Generation with Diffusion Models<br><a href="https://crowsonkb.github.io/hourglass-diffusion-transformers/" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">crowsonkb.github.io/hourglass-</span><span class="invisible">diffusion-transformers/</span></a><br><a href="https://rss-mstdn.studiofreesia.com/tags/ycombinator" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>ycombinator</span></a> <a href="https://rss-mstdn.studiofreesia.com/tags/Diffusion" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Diffusion</span></a> <a href="https://rss-mstdn.studiofreesia.com/tags/Machine_Learning" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Machine_Learning</span></a> <a href="https://rss-mstdn.studiofreesia.com/tags/Generative_Models" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Generative_Models</span></a> <a href="https://rss-mstdn.studiofreesia.com/tags/Generative_AI" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Generative_AI</span></a> <a href="https://rss-mstdn.studiofreesia.com/tags/Megapixel" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Megapixel</span></a> <a href="https://rss-mstdn.studiofreesia.com/tags/High_resolution" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>High_resolution</span></a> <a href="https://rss-mstdn.studiofreesia.com/tags/Image_Synthesis" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Image_Synthesis</span></a> <a href="https://rss-mstdn.studiofreesia.com/tags/Transformer" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Transformer</span></a> <a href="https://rss-mstdn.studiofreesia.com/tags/Neighborhood_Attention" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Neighborhood_Attention</span></a> <a href="https://rss-mstdn.studiofreesia.com/tags/Local_Attention" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Local_Attention</span></a> <a href="https://rss-mstdn.studiofreesia.com/tags/Hierarchical" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Hierarchical</span></a> <a href="https://rss-mstdn.studiofreesia.com/tags/Pixel_space" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Pixel_space</span></a></p>
Published papers at TMLR<p>A Revenue Function for Comparison-Based Hierarchical Clustering</p><p>Aishik Mandal, Michaël Perrot, Debarghya Ghoshdastidar</p><p><a href="https://openreview.net/forum?id=QzWr4w8PXx" target="_blank" rel="nofollow noopener noreferrer" translate="no"><span class="invisible">https://</span><span class="ellipsis">openreview.net/forum?id=QzWr4w</span><span class="invisible">8PXx</span></a></p><p><a href="https://sigmoid.social/tags/hierarchical" class="mention hashtag" rel="tag">#<span>hierarchical</span></a> <a href="https://sigmoid.social/tags/clustering" class="mention hashtag" rel="tag">#<span>clustering</span></a> <a href="https://sigmoid.social/tags/hierarchy" class="mention hashtag" rel="tag">#<span>hierarchy</span></a></p>
New Submissions to TMLR<p>A Revenue Function for Comparison-Based Hierarchical Clustering</p><p><a href="https://openreview.net/forum?id=QzWr4w8PXx" target="_blank" rel="nofollow noopener noreferrer" translate="no"><span class="invisible">https://</span><span class="ellipsis">openreview.net/forum?id=QzWr4w</span><span class="invisible">8PXx</span></a></p><p><a href="https://sigmoid.social/tags/hierarchical" class="mention hashtag" rel="tag">#<span>hierarchical</span></a> <a href="https://sigmoid.social/tags/clustering" class="mention hashtag" rel="tag">#<span>clustering</span></a> <a href="https://sigmoid.social/tags/hierarchy" class="mention hashtag" rel="tag">#<span>hierarchy</span></a></p>
JMLR<p>&#39;HiClass: a Python Library for Local Hierarchical Classification Compatible with Scikit-learn&#39;, by Fábio M. Miranda, Niklas Köhnecke, Bernhard Y. Renard.</p><p><a href="http://jmlr.org/papers/v24/21-1518.html" target="_blank" rel="nofollow noopener noreferrer" translate="no"><span class="invisible">http://</span><span class="ellipsis">jmlr.org/papers/v24/21-1518.ht</span><span class="invisible">ml</span></a> <br /> <br /><a href="https://sigmoid.social/tags/hiclass" class="mention hashtag" rel="tag">#<span>hiclass</span></a> <a href="https://sigmoid.social/tags/hierarchical" class="mention hashtag" rel="tag">#<span>hierarchical</span></a> <a href="https://sigmoid.social/tags/scikit" class="mention hashtag" rel="tag">#<span>scikit</span></a></p>
JMLR<p>&#39;Approximation Bounds for Hierarchical Clustering: Average Linkage, Bisecting K-means, and Local Search&#39;, by Benjamin Moseley, Joshua R. Wang.</p><p><a href="http://jmlr.org/papers/v24/18-080.html" target="_blank" rel="nofollow noopener noreferrer" translate="no"><span class="invisible">http://</span><span class="ellipsis">jmlr.org/papers/v24/18-080.htm</span><span class="invisible">l</span></a> <br /> <br /><a href="https://sigmoid.social/tags/clustering" class="mention hashtag" rel="tag">#<span>clustering</span></a> <a href="https://sigmoid.social/tags/algorithms" class="mention hashtag" rel="tag">#<span>algorithms</span></a> <a href="https://sigmoid.social/tags/hierarchical" class="mention hashtag" rel="tag">#<span>hierarchical</span></a></p>
Bertrand Charpentier<p><a href="https://sigmoid.social/tags/introduction" class="mention hashtag" rel="tag">#<span>introduction</span></a> </p><p>I am a Ph.D. student in <a href="https://sigmoid.social/tags/MachineLearning" class="mention hashtag" rel="tag">#<span>MachineLearning</span></a>. My research interests cover <a href="https://sigmoid.social/tags/uncertainty" class="mention hashtag" rel="tag">#<span>uncertainty</span></a> / <a href="https://sigmoid.social/tags/robustness" class="mention hashtag" rel="tag">#<span>robustness</span></a> in machine learning, <a href="https://sigmoid.social/tags/hierarchical" class="mention hashtag" rel="tag">#<span>hierarchical</span></a> / <a href="https://sigmoid.social/tags/causal" class="mention hashtag" rel="tag">#<span>causal</span></a> inference, and <a href="https://sigmoid.social/tags/efficient" class="mention hashtag" rel="tag">#<span>efficient</span></a> machine learning :)</p>