sigmoid.social is one of the many independent Mastodon servers you can use to participate in the fediverse.
A social space for people researching, working with, or just interested in AI!

Server stats:

588
active users

#linkprediction

0 posts0 participants0 posts today
Pierre Monnin<p>Treat Different Negatives Differently: Enriching Loss Functions with Domain and Range Constraints for Link Prediction<br /><a href="https://2024.eswc-conferences.org/wp-content/uploads/2024/04/146640020.pdf" target="_blank" rel="nofollow noopener" translate="no"><span class="invisible">https://</span><span class="ellipsis">2024.eswc-conferences.org/wp-c</span><span class="invisible">ontent/uploads/2024/04/146640020.pdf</span></a></p><p><a href="https://sigmoid.social/tags/knowledgeGraph" class="mention hashtag" rel="tag">#<span>knowledgeGraph</span></a> <a href="https://sigmoid.social/tags/syntheticData" class="mention hashtag" rel="tag">#<span>syntheticData</span></a> <a href="https://sigmoid.social/tags/neuroSymbolicAI" class="mention hashtag" rel="tag">#<span>neuroSymbolicAI</span></a> <a href="https://sigmoid.social/tags/ArtificialIntelligence" class="mention hashtag" rel="tag">#<span>ArtificialIntelligence</span></a> <a href="https://sigmoid.social/tags/semanticWeb" class="mention hashtag" rel="tag">#<span>semanticWeb</span></a> <a href="https://sigmoid.social/tags/linkPrediction" class="mention hashtag" rel="tag">#<span>linkPrediction</span></a> <a href="https://sigmoid.social/tags/graphEmbedding" class="mention hashtag" rel="tag">#<span>graphEmbedding</span></a></p>
Pierre Monnin<p>PyGraft: Configurable Generation of Synthetic Schemas and Knowledge Graphs at Your Fingertips <a href="https://2024.eswc-conferences.org/wp-content/uploads/2024/04/146640336-1.pdf" target="_blank" rel="nofollow noopener" translate="no"><span class="invisible">https://</span><span class="ellipsis">2024.eswc-conferences.org/wp-c</span><span class="invisible">ontent/uploads/2024/04/146640336-1.pdf</span></a></p><p><a href="https://sigmoid.social/tags/knowledgeGraph" class="mention hashtag" rel="tag">#<span>knowledgeGraph</span></a> <a href="https://sigmoid.social/tags/syntheticData" class="mention hashtag" rel="tag">#<span>syntheticData</span></a> <a href="https://sigmoid.social/tags/neuroSymbolicAI" class="mention hashtag" rel="tag">#<span>neuroSymbolicAI</span></a> <a href="https://sigmoid.social/tags/ArtificialIntelligence" class="mention hashtag" rel="tag">#<span>ArtificialIntelligence</span></a> <a href="https://sigmoid.social/tags/semanticWeb" class="mention hashtag" rel="tag">#<span>semanticWeb</span></a> <a href="https://sigmoid.social/tags/linkPrediction" class="mention hashtag" rel="tag">#<span>linkPrediction</span></a> <a href="https://sigmoid.social/tags/graphEmbedding" class="mention hashtag" rel="tag">#<span>graphEmbedding</span></a></p>
Pierre Monnin<p>Very glad to announce that we got 2 best paper awards at <a href="https://sigmoid.social/tags/ESWC2024" class="mention hashtag" rel="tag">#<span>ESWC2024</span></a> for our works about PyGraft (resource track) and semantically enhanced loss functions to learn graph <a href="https://sigmoid.social/tags/embedding" class="mention hashtag" rel="tag">#<span>embedding</span></a> (research track)! Congratulations Nicolas Hubert!</p><p><a href="https://sigmoid.social/tags/knowledgeGraph" class="mention hashtag" rel="tag">#<span>knowledgeGraph</span></a> <a href="https://sigmoid.social/tags/syntheticData" class="mention hashtag" rel="tag">#<span>syntheticData</span></a> <a href="https://sigmoid.social/tags/neuroSymbolicAI" class="mention hashtag" rel="tag">#<span>neuroSymbolicAI</span></a> <a href="https://sigmoid.social/tags/ArtificialIntelligence" class="mention hashtag" rel="tag">#<span>ArtificialIntelligence</span></a> <a href="https://sigmoid.social/tags/semanticWeb" class="mention hashtag" rel="tag">#<span>semanticWeb</span></a> <a href="https://sigmoid.social/tags/linkPrediction" class="mention hashtag" rel="tag">#<span>linkPrediction</span></a> <a href="https://sigmoid.social/tags/graphEmbedding" class="mention hashtag" rel="tag">#<span>graphEmbedding</span></a></p>
Pierre Monnin<p>Very happy to announce our new paper accepted in <span class="h-card" translate="no"><a href="https://sigmoid.social/@eswc_conf" class="u-url mention">@<span>eswc_conf</span></a></span><br /> <a href="https://sigmoid.social/tags/ESWC2024" class="mention hashtag" rel="tag">#<span>ESWC2024</span></a>: &quot;Treat Different Negatives Differently: Enriching Loss Functions with Domain and Range Constraints for Link Prediction&quot;!</p><p>📎 <a href="https://arxiv.org/pdf/2303.00286.pdf" target="_blank" rel="nofollow noopener" translate="no"><span class="invisible">https://</span><span class="">arxiv.org/pdf/2303.00286.pdf</span><span class="invisible"></span></a></p><p>w/ N. Hubert, A. Brun, and D. Monticolo</p><p><a href="https://sigmoid.social/tags/knowledgeGraph" class="mention hashtag" rel="tag">#<span>knowledgeGraph</span></a> <a href="https://sigmoid.social/tags/semanticWeb" class="mention hashtag" rel="tag">#<span>semanticWeb</span></a> <a href="https://sigmoid.social/tags/machineLearning" class="mention hashtag" rel="tag">#<span>machineLearning</span></a> <a href="https://sigmoid.social/tags/linkPrediction" class="mention hashtag" rel="tag">#<span>linkPrediction</span></a> <a href="https://sigmoid.social/tags/neurosymbolicAI" class="mention hashtag" rel="tag">#<span>neurosymbolicAI</span></a> <a href="https://sigmoid.social/tags/artificialIntelligence" class="mention hashtag" rel="tag">#<span>artificialIntelligence</span></a> <a href="https://sigmoid.social/tags/linkedOpenData" class="mention hashtag" rel="tag">#<span>linkedOpenData</span></a> <a href="https://sigmoid.social/tags/graphEmbeddings" class="mention hashtag" rel="tag">#<span>graphEmbeddings</span></a> <a href="https://sigmoid.social/tags/embeddings" class="mention hashtag" rel="tag">#<span>embeddings</span></a> <a href="https://sigmoid.social/tags/graphNeuralNetworks" class="mention hashtag" rel="tag">#<span>graphNeuralNetworks</span></a></p>
Pierre Monnin<p>Our paper &quot;PyGraft: Configurable Generation of Synthetic <a href="https://sigmoid.social/tags/Schemas" class="mention hashtag" rel="tag">#<span>Schemas</span></a> and <a href="https://sigmoid.social/tags/KnowledgeGraphs" class="mention hashtag" rel="tag">#<span>KnowledgeGraphs</span></a> at Your Fingertips&quot; has been accepted in <span class="h-card" translate="no"><a href="https://sigmoid.social/@eswc_conf" class="u-url mention">@<span>eswc_conf</span></a></span> <a href="https://sigmoid.social/tags/ESWC2024" class="mention hashtag" rel="tag">#<span>ESWC2024</span></a>!</p><p>Paper: <a href="https://arxiv.org/pdf/2309.03685.pdf" target="_blank" rel="nofollow noopener" translate="no"><span class="invisible">https://</span><span class="">arxiv.org/pdf/2309.03685.pdf</span><span class="invisible"></span></a><br />Code: <a href="https://github.com/nicolas-hbt/pygraft" target="_blank" rel="nofollow noopener" translate="no"><span class="invisible">https://</span><span class="">github.com/nicolas-hbt/pygraft</span><span class="invisible"></span></a></p><p>PyGraft is a configurable <a href="https://sigmoid.social/tags/Python" class="mention hashtag" rel="tag">#<span>Python</span></a> tool to generate both synthetic <a href="https://sigmoid.social/tags/schemas" class="mention hashtag" rel="tag">#<span>schemas</span></a> and <a href="https://sigmoid.social/tags/knowledgeGraphs" class="mention hashtag" rel="tag">#<span>knowledgeGraphs</span></a> easily, supporting several RDFS and OWL constructs. These <a href="https://sigmoid.social/tags/datasets" class="mention hashtag" rel="tag">#<span>datasets</span></a> are useful for, e.g., <a href="https://sigmoid.social/tags/neurosymbolicAI" class="mention hashtag" rel="tag">#<span>neurosymbolicAI</span></a>, <a href="https://sigmoid.social/tags/linkPrediction" class="mention hashtag" rel="tag">#<span>linkPrediction</span></a>, <a href="https://sigmoid.social/tags/nodeClassification" class="mention hashtag" rel="tag">#<span>nodeClassification</span></a>, <a href="https://sigmoid.social/tags/nodeClustering" class="mention hashtag" rel="tag">#<span>nodeClustering</span></a>, <a href="https://sigmoid.social/tags/ontology" class="mention hashtag" rel="tag">#<span>ontology</span></a> repairing</p>
Harald Sack<p>2nd add on to our free MOOC lecture series on <a href="https://sigmoid.social/tags/KnowledgeGraphs" class="mention hashtag" rel="tag">#<span>KnowledgeGraphs</span></a> is a colab notebook on knowledge graph completion with TransE through which my colleagues Ann Tan and <span class="h-card" translate="no"><a href="https://sigmoid.social/@MahsaVafaie" class="u-url mention">@<span>MahsaVafaie</span></a></span> will guide you in the video.<br /><a href="https://sigmoid.social/tags/OpenHPI" class="mention hashtag" rel="tag">#<span>OpenHPI</span></a> video: <a href="https://open.hpi.de/courses/knowledgegraphs2023/items/48Sn5Tr9RKo24RXu7OwgOz" target="_blank" rel="nofollow noopener" translate="no"><span class="invisible">https://</span><span class="ellipsis">open.hpi.de/courses/knowledgeg</span><span class="invisible">raphs2023/items/48Sn5Tr9RKo24RXu7OwgOz</span></a><br />youtube video: <a href="https://www.youtube.com/watch?v=IVTVzgCbHOw&amp;list=PLNXdQl4kBgzubTOfY5cbtxZCgg9UTe-uF&amp;index=67" target="_blank" rel="nofollow noopener" translate="no"><span class="invisible">https://www.</span><span class="ellipsis">youtube.com/watch?v=IVTVzgCbHO</span><span class="invisible">w&amp;list=PLNXdQl4kBgzubTOfY5cbtxZCgg9UTe-uF&amp;index=67</span></a><br />colab notebook: <a href="https://colab.research.google.com/drive/104ad-kusmzfYgkK_L8ETWUAjfdreE9e2#scrollTo=fQ08XPbaZgQ4" target="_blank" rel="nofollow noopener" translate="no"><span class="invisible">https://</span><span class="ellipsis">colab.research.google.com/driv</span><span class="invisible">e/104ad-kusmzfYgkK_L8ETWUAjfdreE9e2#scrollTo=fQ08XPbaZgQ4</span></a></p><p><span class="h-card" translate="no"><a href="https://sigmoid.social/@fizise" class="u-url mention">@<span>fizise</span></a></span> <span class="h-card" translate="no"><a href="https://wisskomm.social/@fiz_karlsruhe" class="u-url mention">@<span>fiz_karlsruhe</span></a></span> <a href="https://sigmoid.social/tags/semanticweb" class="mention hashtag" rel="tag">#<span>semanticweb</span></a> <a href="https://sigmoid.social/tags/kge" class="mention hashtag" rel="tag">#<span>kge</span></a> <a href="https://sigmoid.social/tags/embeddings" class="mention hashtag" rel="tag">#<span>embeddings</span></a> <a href="https://sigmoid.social/tags/linkprediction" class="mention hashtag" rel="tag">#<span>linkprediction</span></a> <a href="https://sigmoid.social/tags/videolecture" class="mention hashtag" rel="tag">#<span>videolecture</span></a> <a href="https://sigmoid.social/tags/video" class="mention hashtag" rel="tag">#<span>video</span></a></p>
Harald Sack<p>Knowledge Graph Embeddings (KGEs) are a very useful tool for few- and zero-shot learning. Of course Link Prediction and <a href="https://sigmoid.social/tags/KnowledgeGraph" class="mention hashtag" rel="tag">#<span>KnowledgeGraph</span></a> Completion are the most prominent tasks for KGEs. My colleague Ann Tan and I will start our investigation of KGEs in this section of our free <a href="https://sigmoid.social/tags/kg2023" class="mention hashtag" rel="tag">#<span>kg2023</span></a> lecture.<br />OpenHPI video: <a href="https://open.hpi.de/courses/knowledgegraphs2023/items/3xfeKrryLMeY45OXSwBd86" target="_blank" rel="nofollow noopener" translate="no"><span class="invisible">https://</span><span class="ellipsis">open.hpi.de/courses/knowledgeg</span><span class="invisible">raphs2023/items/3xfeKrryLMeY45OXSwBd86</span></a><br />youtube video: <a href="https://www.youtube.com/watch?v=UGmtYSCXsQk&amp;list=PLNXdQl4kBgzubTOfY5cbtxZCgg9UTe-uF&amp;index=62" target="_blank" rel="nofollow noopener" translate="no"><span class="invisible">https://www.</span><span class="ellipsis">youtube.com/watch?v=UGmtYSCXsQ</span><span class="invisible">k&amp;list=PLNXdQl4kBgzubTOfY5cbtxZCgg9UTe-uF&amp;index=62</span></a><br />slides: <a href="https://zenodo.org/records/10185280" target="_blank" rel="nofollow noopener" translate="no"><span class="invisible">https://</span><span class="">zenodo.org/records/10185280</span><span class="invisible"></span></a><br /><span class="h-card" translate="no"><a href="https://fedihum.org/@tabea" class="u-url mention">@<span>tabea</span></a></span> <span class="h-card" translate="no"><a href="https://fedihum.org/@sashabruns" class="u-url mention">@<span>sashabruns</span></a></span> <span class="h-card" translate="no"><a href="https://sigmoid.social/@MahsaVafaie" class="u-url mention">@<span>MahsaVafaie</span></a></span> <span class="h-card" translate="no"><a href="https://wisskomm.social/@fiz_karlsruhe" class="u-url mention">@<span>fiz_karlsruhe</span></a></span> <span class="h-card" translate="no"><a href="https://sigmoid.social/@fizise" class="u-url mention">@<span>fizise</span></a></span> <a href="https://sigmoid.social/tags/embeddings" class="mention hashtag" rel="tag">#<span>embeddings</span></a> <a href="https://sigmoid.social/tags/linkprediction" class="mention hashtag" rel="tag">#<span>linkprediction</span></a></p>
Pierre Monnin<p>PyGraft will help you generate new and tailored benchmark KG <a href="https://sigmoid.social/tags/datasets" class="mention hashtag" rel="tag">#<span>datasets</span></a> useful in various fields including but not limited to <a href="https://sigmoid.social/tags/neurosymbolicAI" class="mention hashtag" rel="tag">#<span>neurosymbolicAI</span></a>, <a href="https://sigmoid.social/tags/linkPrediction" class="mention hashtag" rel="tag">#<span>linkPrediction</span></a>, <a href="https://sigmoid.social/tags/nodeClassification" class="mention hashtag" rel="tag">#<span>nodeClassification</span></a>, <a href="https://sigmoid.social/tags/nodeClustering" class="mention hashtag" rel="tag">#<span>nodeClustering</span></a>, <a href="https://sigmoid.social/tags/ontology" class="mention hashtag" rel="tag">#<span>ontology</span></a> repairing, pattern mining, reasoning, scalability studies, etc.</p><p>Feel free to download, star, fork, share and tell us about any usage you foresee! We welcome all contributions or ideas to improve PyGraft! Looking forward to feedback from <a href="https://sigmoid.social/tags/semanticWeb" class="mention hashtag" rel="tag">#<span>semanticWeb</span></a> <a href="https://sigmoid.social/tags/machineLearning" class="mention hashtag" rel="tag">#<span>machineLearning</span></a> and other communities!</p>
Harald Sack<p>As a 2nd topic of this last <a href="https://sigmoid.social/tags/ise2023" class="mention hashtag" rel="tag">#<span>ise2023</span></a> lecture, we were discussing <a href="https://sigmoid.social/tags/KnowledgeGraph" class="mention hashtag" rel="tag">#<span>KnowledgeGraph</span></a> Completion. Most simple approach for unsupervised <a href="https://sigmoid.social/tags/linkprediction" class="mention hashtag" rel="tag">#<span>linkprediction</span></a> based on (here translation-based) knowledge graph embeddings was explained on the example of Isaac Asimov. <br />Slides: <a href="https://drive.google.com/file/d/1atNvMYNkeKDwXP3olHXzloa09S5pzjXb/view?usp=drive_link" target="_blank" rel="nofollow noopener" translate="no"><span class="invisible">https://</span><span class="ellipsis">drive.google.com/file/d/1atNvM</span><span class="invisible">YNkeKDwXP3olHXzloa09S5pzjXb/view?usp=drive_link</span></a><br /><span class="h-card" translate="no"><a href="https://sigmoid.social/@fizise" class="u-url mention">@<span>fizise</span></a></span> <span class="h-card" translate="no"><a href="https://sigmoid.social/@enorouzi" class="u-url mention">@<span>enorouzi</span></a></span> <a href="https://sigmoid.social/tags/scifi" class="mention hashtag" rel="tag">#<span>scifi</span></a> <a href="https://sigmoid.social/tags/knowledgegraphs" class="mention hashtag" rel="tag">#<span>knowledgegraphs</span></a> <a href="https://sigmoid.social/tags/ai" class="mention hashtag" rel="tag">#<span>ai</span></a> <a href="https://sigmoid.social/tags/deeplearning" class="mention hashtag" rel="tag">#<span>deeplearning</span></a> <a href="https://sigmoid.social/tags/embeddings" class="mention hashtag" rel="tag">#<span>embeddings</span></a></p>
Harald Sack<p>Topics of the last <a href="https://sigmoid.social/tags/ise2023" class="mention hashtag" rel="tag">#<span>ise2023</span></a> lecture; The Graph in <a href="https://sigmoid.social/tags/KnowledgeGraphs" class="mention hashtag" rel="tag">#<span>KnowledgeGraphs</span></a>, Knowledge Graph Completion, A Brief History of Large Language Models, and Knowledge Graphs and Large Language Models. I will highlight some topics with the upcoming toots...<br />Slides: <a href="https://drive.google.com/file/d/1atNvMYNkeKDwXP3olHXzloa09S5pzjXb/view?usp=drive_link" target="_blank" rel="nofollow noopener" translate="no"><span class="invisible">https://</span><span class="ellipsis">drive.google.com/file/d/1atNvM</span><span class="invisible">YNkeKDwXP3olHXzloa09S5pzjXb/view?usp=drive_link</span></a><br /><a href="https://sigmoid.social/tags/llms" class="mention hashtag" rel="tag">#<span>llms</span></a> <a href="https://sigmoid.social/tags/languagemodels" class="mention hashtag" rel="tag">#<span>languagemodels</span></a> <a href="https://sigmoid.social/tags/deeplearning" class="mention hashtag" rel="tag">#<span>deeplearning</span></a> <a href="https://sigmoid.social/tags/linkprediction" class="mention hashtag" rel="tag">#<span>linkprediction</span></a> <a href="https://sigmoid.social/tags/kgc" class="mention hashtag" rel="tag">#<span>kgc</span></a> <a href="https://sigmoid.social/tags/lecture" class="mention hashtag" rel="tag">#<span>lecture</span></a> <a href="https://sigmoid.social/tags/machinelearning" class="mention hashtag" rel="tag">#<span>machinelearning</span></a> <a href="https://sigmoid.social/tags/transformers" class="mention hashtag" rel="tag">#<span>transformers</span></a> <a href="https://sigmoid.social/tags/gpt" class="mention hashtag" rel="tag">#<span>gpt</span></a> <span class="h-card" translate="no"><a href="https://sigmoid.social/@fizise" class="u-url mention">@<span>fizise</span></a></span> <span class="h-card" translate="no"><a href="https://sigmoid.social/@enorouzi" class="u-url mention">@<span>enorouzi</span></a></span></p>
Pierre Monnin<p>Thrilled to announce our new preprint &quot;Sem@K: Is my knowledge graph embedding model semantic-aware?&quot; on arXiv: <a href="https://arxiv.org/pdf/2301.05601.pdf" target="_blank" rel="nofollow noopener" translate="no"><span class="invisible">https://</span><span class="">arxiv.org/pdf/2301.05601.pdf</span><span class="invisible"></span></a><br />w/ Nicolas Hubert, Armelle Brun, Davy Monticolo<br /><a href="https://sigmoid.social/tags/knowledgeGraph" class="mention hashtag" rel="tag">#<span>knowledgeGraph</span></a> <a href="https://sigmoid.social/tags/neuroSymbolicAI" class="mention hashtag" rel="tag">#<span>neuroSymbolicAI</span></a> <a href="https://sigmoid.social/tags/artificialIntelligence" class="mention hashtag" rel="tag">#<span>artificialIntelligence</span></a> <a href="https://sigmoid.social/tags/machineLearning" class="mention hashtag" rel="tag">#<span>machineLearning</span></a> <a href="https://sigmoid.social/tags/linkPrediction" class="mention hashtag" rel="tag">#<span>linkPrediction</span></a></p>