sigmoid.social is one of the many independent Mastodon servers you can use to participate in the fediverse.
A social space for people researching, working with, or just interested in AI!

Server stats:

599
active users

#multiclass

0 posts0 participants0 posts today
JMLR<p>&#39;Consistent Multiclass Algorithms for Complex Metrics and Constraints&#39;, by Harikrishna Narasimhan et al.</p><p><a href="http://jmlr.org/papers/v25/22-1137.html" target="_blank" rel="nofollow noopener" translate="no"><span class="invisible">http://</span><span class="ellipsis">jmlr.org/papers/v25/22-1137.ht</span><span class="invisible">ml</span></a> <br /> <br /><a href="https://sigmoid.social/tags/multiclass" class="mention hashtag" rel="tag">#<span>multiclass</span></a> <a href="https://sigmoid.social/tags/classifier" class="mention hashtag" rel="tag">#<span>classifier</span></a> <a href="https://sigmoid.social/tags/classification" class="mention hashtag" rel="tag">#<span>classification</span></a></p>
JMLR<p>&#39;Unified Binary and Multiclass Margin-Based Classification&#39;, by Yutong Wang, Clayton Scott.</p><p><a href="http://jmlr.org/papers/v25/23-1599.html" target="_blank" rel="nofollow noopener" translate="no"><span class="invisible">http://</span><span class="ellipsis">jmlr.org/papers/v25/23-1599.ht</span><span class="invisible">ml</span></a> <br /> <br /><a href="https://sigmoid.social/tags/classification" class="mention hashtag" rel="tag">#<span>classification</span></a> <a href="https://sigmoid.social/tags/multiclass" class="mention hashtag" rel="tag">#<span>multiclass</span></a> <a href="https://sigmoid.social/tags/losses" class="mention hashtag" rel="tag">#<span>losses</span></a></p>
JMLR<p>&#39;Generalization error bounds for multiclass sparse linear classifiers&#39;, by Tomer Levy, Felix Abramovich.</p><p><a href="http://jmlr.org/papers/v24/22-0367.html" target="_blank" rel="nofollow noopener" translate="no"><span class="invisible">http://</span><span class="ellipsis">jmlr.org/papers/v24/22-0367.ht</span><span class="invisible">ml</span></a> <br /> <br /><a href="https://sigmoid.social/tags/classifiers" class="mention hashtag" rel="tag">#<span>classifiers</span></a> <a href="https://sigmoid.social/tags/multiclass" class="mention hashtag" rel="tag">#<span>multiclass</span></a> <a href="https://sigmoid.social/tags/misclassification" class="mention hashtag" rel="tag">#<span>misclassification</span></a></p>
New Submissions to TMLR<p>Controlling Confusion via Generalisation Bounds</p><p><a href="https://openreview.net/forum?id=iIox1e72OK" target="_blank" rel="nofollow noopener" translate="no"><span class="invisible">https://</span><span class="ellipsis">openreview.net/forum?id=iIox1e</span><span class="invisible">72OK</span></a></p><p><a href="https://sigmoid.social/tags/multiclass" class="mention hashtag" rel="tag">#<span>multiclass</span></a> <a href="https://sigmoid.social/tags/classification" class="mention hashtag" rel="tag">#<span>classification</span></a> <a href="https://sigmoid.social/tags/generalisation" class="mention hashtag" rel="tag">#<span>generalisation</span></a></p>
JMLR<p>&#39;The multimarginal optimal transport formulation of adversarial multiclass classification&#39;, by Nicolás García Trillos, Matt Jacobs, Jakwang Kim.</p><p><a href="http://jmlr.org/papers/v24/22-0698.html" target="_blank" rel="nofollow noopener" translate="no"><span class="invisible">http://</span><span class="ellipsis">jmlr.org/papers/v24/22-0698.ht</span><span class="invisible">ml</span></a> <br /> <br /><a href="https://sigmoid.social/tags/adversarial" class="mention hashtag" rel="tag">#<span>adversarial</span></a> <a href="https://sigmoid.social/tags/multiclass" class="mention hashtag" rel="tag">#<span>multiclass</span></a> <a href="https://sigmoid.social/tags/classification" class="mention hashtag" rel="tag">#<span>classification</span></a></p>