sigmoid.social is one of the many independent Mastodon servers you can use to participate in the fediverse.
A social space for people researching, working with, or just interested in AI!

Server stats:

587
active users

#optimal

0 posts0 participants0 posts today
Hacker News<p>How often is the query plan optimal?</p><p><a href="https://vondra.me/posts/how-often-is-the-query-plan-optimal/" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">vondra.me/posts/how-often-is-t</span><span class="invisible">he-query-plan-optimal/</span></a></p><p><a href="https://mastodon.social/tags/HackerNews" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>HackerNews</span></a> <a href="https://mastodon.social/tags/How" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>How</span></a> <a href="https://mastodon.social/tags/often" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>often</span></a> <a href="https://mastodon.social/tags/is" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>is</span></a> <a href="https://mastodon.social/tags/the" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>the</span></a> <a href="https://mastodon.social/tags/query" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>query</span></a> <a href="https://mastodon.social/tags/plan" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>plan</span></a> <a href="https://mastodon.social/tags/optimal" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>optimal</span></a>? <a href="https://mastodon.social/tags/queryplan" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>queryplan</span></a> <a href="https://mastodon.social/tags/database" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>database</span></a> <a href="https://mastodon.social/tags/optimization" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>optimization</span></a> <a href="https://mastodon.social/tags/performance" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>performance</span></a> <a href="https://mastodon.social/tags/analysis" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>analysis</span></a> <a href="https://mastodon.social/tags/HackerNews" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>HackerNews</span></a></p>
Matteo Ceriotti<p>With my colleague Dr Kevin Worrall <a href="https://mastodon.social/tags/UofG" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>UofG</span></a>, happy to support Craft Prospect Ltd on a new project from the European Space Agency <a href="https://mastodon.social/tags/ESA" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>ESA</span></a> <span class="h-card" translate="no"><a href="https://feddit.nl/c/esa" class="u-url mention" rel="nofollow noopener" target="_blank">@<span>esa</span></a></span>:</p><p>‘Robust real-time constrained <a href="https://mastodon.social/tags/optimal" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>optimal</span></a> <a href="https://mastodon.social/tags/control" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>control</span></a> using machine learning’ (ROC-ML)</p><p>It will demonstrate machine learning algorithms for motion planning in orbital <a href="https://mastodon.social/tags/space" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>space</span></a> missions, covering missions include active <a href="https://mastodon.social/tags/debris" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>debris</span></a> removal, in-orbit servicing and space station assembly.</p><p><a href="https://www.gla.ac.uk/news/headline_1186652_en.html" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://www.</span><span class="ellipsis">gla.ac.uk/news/headline_118665</span><span class="invisible">2_en.html</span></a></p><p><a href="https://mastodon.social/tags/space" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>space</span></a> <a href="https://mastodon.social/tags/esa" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>esa</span></a> <a href="https://mastodon.social/tags/ml" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>ml</span></a> <a href="https://mastodon.social/tags/control" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>control</span></a> <a href="https://mastodon.social/tags/engineering" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>engineering</span></a> <a href="https://mastodon.social/tags/UofG" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>UofG</span></a></p>
UK<p><a href="https://www.europesays.com/uk/136948/" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://www.</span><span class="">europesays.com/uk/136948/</span><span class="invisible"></span></a> Final Settlement of Computing Power Loss! KixaMiner Launches Intelligent Chain Scheduling System with Millisecond-Level Optimal Mining Protocol Switching <a href="https://pubeurope.com/tags/Chain" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Chain</span></a> <a href="https://pubeurope.com/tags/Computing" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Computing</span></a> <a href="https://pubeurope.com/tags/Final" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Final</span></a> <a href="https://pubeurope.com/tags/Intelligent" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Intelligent</span></a> <a href="https://pubeurope.com/tags/KixaMiner" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>KixaMiner</span></a> <a href="https://pubeurope.com/tags/launches" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>launches</span></a> <a href="https://pubeurope.com/tags/loss" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>loss</span></a> <a href="https://pubeurope.com/tags/MillisecondLevel" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>MillisecondLevel</span></a> <a href="https://pubeurope.com/tags/Mining" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Mining</span></a> <a href="https://pubeurope.com/tags/of" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>of</span></a> <a href="https://pubeurope.com/tags/Optimal" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Optimal</span></a> <a href="https://pubeurope.com/tags/power" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>power</span></a> <a href="https://pubeurope.com/tags/Protocol" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Protocol</span></a> <a href="https://pubeurope.com/tags/Scheduling" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Scheduling</span></a> <a href="https://pubeurope.com/tags/settlement" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>settlement</span></a> <a href="https://pubeurope.com/tags/Switching" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Switching</span></a> <a href="https://pubeurope.com/tags/System" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>System</span></a> <a href="https://pubeurope.com/tags/Technology" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Technology</span></a> <a href="https://pubeurope.com/tags/UK" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>UK</span></a> <a href="https://pubeurope.com/tags/UnitedKingdom" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>UnitedKingdom</span></a> <a href="https://pubeurope.com/tags/with" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>with</span></a></p>
JMLR<p>&#39;Optimization Over a Probability Simplex&#39;, by James Chok, Geoffrey M. Vasil.</p><p><a href="http://jmlr.org/papers/v26/23-1166.html" target="_blank" rel="nofollow noopener" translate="no"><span class="invisible">http://</span><span class="ellipsis">jmlr.org/papers/v26/23-1166.ht</span><span class="invisible">ml</span></a> <br /> <br /><a href="https://sigmoid.social/tags/optimal" class="mention hashtag" rel="tag">#<span>optimal</span></a> <a href="https://sigmoid.social/tags/optimization" class="mention hashtag" rel="tag">#<span>optimization</span></a> <a href="https://sigmoid.social/tags/optimize" class="mention hashtag" rel="tag">#<span>optimize</span></a></p>
IJCISIM Journal<p>👏<a href="https://fediscience.org/tags/call4reading" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>call4reading</span></a></p><p>✍️Finding the <a href="https://fediscience.org/tags/Optimal" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Optimal</span></a> Placement of <a href="https://fediscience.org/tags/Evacuation" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Evacuation</span></a> Centers by Antibase Set of <a href="https://fediscience.org/tags/Intuitionistic" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Intuitionistic</span></a> Fuzzy Graph <a href="https://fediscience.org/tags/by" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>by</span></a> Alexander Bozhenyuk, Evgeniya Gerasimenko and Sergey Rodzin</p><p>🔗<a href="https://cspub-ijcisim.org/index.php/ijcisim/article/view/512" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">cspub-ijcisim.org/index.php/ij</span><span class="invisible">cisim/article/view/512</span></a></p>
IJCISIM Journal<p>👏<a href="https://fediscience.org/tags/call4reading" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>call4reading</span></a></p><p>✍️Detection of <a href="https://fediscience.org/tags/Lung" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Lung</span></a> Cancer Using <a href="https://fediscience.org/tags/Optimal" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Optimal</span></a> Hybrid <a href="https://fediscience.org/tags/Segmentation" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Segmentation</span></a> and <a href="https://fediscience.org/tags/Classification" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Classification</span></a> <a href="https://fediscience.org/tags/by" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>by</span></a> Roopa Chandrika R, V. Anitha, Nihar Ranjan Behera, P. Vamsi Krishna, Ravindra NamdeoraoJogekar, Kamlesh Singh</p><p>🔗<a href="https://cspub-ijcisim.org/index.php/ijcisim/article/view/554" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">cspub-ijcisim.org/index.php/ij</span><span class="invisible">cisim/article/view/554</span></a></p>
JMLR<p>&#39;Contextual Bandits with Packing and Covering Constraints: A Modular Lagrangian Approach via Regression&#39;, by Aleksandrs Slivkins, Xingyu Zhou, Karthik Abinav Sankararaman, Dylan J. Foster.</p><p><a href="http://jmlr.org/papers/v25/24-1220.html" target="_blank" rel="nofollow noopener" translate="no"><span class="invisible">http://</span><span class="ellipsis">jmlr.org/papers/v25/24-1220.ht</span><span class="invisible">ml</span></a> <br /> <br /><a href="https://sigmoid.social/tags/bandits" class="mention hashtag" rel="tag">#<span>bandits</span></a> <a href="https://sigmoid.social/tags/knapsacks" class="mention hashtag" rel="tag">#<span>knapsacks</span></a> <a href="https://sigmoid.social/tags/optimal" class="mention hashtag" rel="tag">#<span>optimal</span></a></p>
JMLR<p>&#39;Near-Optimal Algorithms for Making the Gradient Small in Stochastic Minimax Optimization&#39;, by Lesi Chen, Luo Luo.</p><p><a href="http://jmlr.org/papers/v25/22-1126.html" target="_blank" rel="nofollow noopener" translate="no"><span class="invisible">http://</span><span class="ellipsis">jmlr.org/papers/v25/22-1126.ht</span><span class="invisible">ml</span></a> <br /> <br /><a href="https://sigmoid.social/tags/minimax" class="mention hashtag" rel="tag">#<span>minimax</span></a> <a href="https://sigmoid.social/tags/optimization" class="mention hashtag" rel="tag">#<span>optimization</span></a> <a href="https://sigmoid.social/tags/optimal" class="mention hashtag" rel="tag">#<span>optimal</span></a></p>
JMLR<p>&#39;Optimal Decision Tree and Adaptive Submodular Ranking with Noisy Outcomes&#39;, by Su Jia, Fatemeh Navidi, Viswanath Nagarajan, R. Ravi.</p><p><a href="http://jmlr.org/papers/v25/23-1484.html" target="_blank" rel="nofollow noopener" translate="no"><span class="invisible">http://</span><span class="ellipsis">jmlr.org/papers/v25/23-1484.ht</span><span class="invisible">ml</span></a> <br /> <br /><a href="https://sigmoid.social/tags/adaptive" class="mention hashtag" rel="tag">#<span>adaptive</span></a> <a href="https://sigmoid.social/tags/classifiers" class="mention hashtag" rel="tag">#<span>classifiers</span></a> <a href="https://sigmoid.social/tags/optimal" class="mention hashtag" rel="tag">#<span>optimal</span></a></p>
Knowledge Zone<p><a href="https://mstdn.social/tags/Proof" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Proof</span></a> of <a href="https://mstdn.social/tags/Perfection" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Perfection</span></a> : Medium</p><p><a href="https://mstdn.social/tags/Scientists" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Scientists</span></a> figured out the <a href="https://mstdn.social/tags/Optimal" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Optimal</span></a> cup of <a href="https://mstdn.social/tags/Coffee" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Coffee</span></a> : Pop Sci</p><p><a href="https://mstdn.social/tags/Physicists" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Physicists</span></a> describe <a href="https://mstdn.social/tags/Exotic" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Exotic</span></a> ‘<a href="https://mstdn.social/tags/Paraparticles" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Paraparticles</span></a>’ that defy <a href="https://mstdn.social/tags/Categorization" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Categorization</span></a> : Nature</p><p>Check our latest <a href="https://mstdn.social/tags/KnowledgeLinks" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>KnowledgeLinks</span></a></p><p><a href="https://knowledgezone.co.in/resources/bookmarks" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">knowledgezone.co.in/resources/</span><span class="invisible">bookmarks</span></a></p>
IJCISIM Journal<p>👏<a href="https://fediscience.org/tags/call4reading" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>call4reading</span></a></p><p>✍️OptDCE: An <a href="https://fediscience.org/tags/Optimal" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Optimal</span></a> and Diverse <a href="https://fediscience.org/tags/Classifier" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Classifier</span></a> Ensemble for Imbalanced <a href="https://fediscience.org/tags/Datasets" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Datasets</span></a> <a href="https://fediscience.org/tags/by" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>by</span></a> Uma R. Godase and Darshan V. Medhane</p><p>🔗<a href="https://cspub-ijcisim.org/index.php/ijcisim/article/view/425" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">cspub-ijcisim.org/index.php/ij</span><span class="invisible">cisim/article/view/425</span></a></p>
JMLR<p>&#39;On the Convergence of Projected Alternating Maximization for Equitable and Optimal Transport&#39;, by Minhui Huang, Shiqian Ma, Lifeng Lai.</p><p><a href="http://jmlr.org/papers/v25/22-0524.html" target="_blank" rel="nofollow noopener" translate="no"><span class="invisible">http://</span><span class="ellipsis">jmlr.org/papers/v25/22-0524.ht</span><span class="invisible">ml</span></a> <br /> <br /><a href="https://sigmoid.social/tags/optimal" class="mention hashtag" rel="tag">#<span>optimal</span></a> <a href="https://sigmoid.social/tags/optimization" class="mention hashtag" rel="tag">#<span>optimization</span></a> <a href="https://sigmoid.social/tags/maximization" class="mention hashtag" rel="tag">#<span>maximization</span></a></p>
JMLR<p>&#39;Matryoshka Policy Gradient for Entropy-Regularized RL: Convergence and Global Optimality&#39;, by François G. Ged, Maria Han Veiga.</p><p><a href="http://jmlr.org/papers/v25/23-0879.html" target="_blank" rel="nofollow noopener" translate="no"><span class="invisible">http://</span><span class="ellipsis">jmlr.org/papers/v25/23-0879.ht</span><span class="invisible">ml</span></a> <br /> <br /><a href="https://sigmoid.social/tags/softmax" class="mention hashtag" rel="tag">#<span>softmax</span></a> <a href="https://sigmoid.social/tags/optimality" class="mention hashtag" rel="tag">#<span>optimality</span></a> <a href="https://sigmoid.social/tags/optimal" class="mention hashtag" rel="tag">#<span>optimal</span></a></p>
Bose-Einstein-Kondensat<p><a href="https://mstdn.social/tags/OPTImAL" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>OPTImAL</span></a>: <a href="https://mstdn.social/tags/Optical" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Optical</span></a> projection <a href="https://mstdn.social/tags/tomography" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>tomography</span></a> implemented for <a href="https://mstdn.social/tags/OpenSource" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>OpenSource</span></a> accessibility &amp; low cost:</p><p>-<a href="https://mstdn.social/tags/LED" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>LED</span></a> excitation<br>-<a href="https://mstdn.social/tags/motorized" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>motorized</span></a> rotation stage<br>-<a href="https://mstdn.social/tags/GPU" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>GPU</span></a>-based <a href="https://mstdn.social/tags/image" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>image</span></a> reconstruction (<a href="https://mstdn.social/tags/MATLAB" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>MATLAB</span></a>/#ASTRA)</p><p><a href="https://doi.org/10.1098/rsta.2023.0101" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="">doi.org/10.1098/rsta.2023.0101</span><span class="invisible"></span></a><br><a href="https://mstdn.social/tags/DIYbio" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>DIYbio</span></a> <a href="https://mstdn.social/tags/lab" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>lab</span></a> <a href="https://mstdn.social/tags/instruments" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>instruments</span></a> <a href="https://mstdn.social/tags/fluorescence" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>fluorescence</span></a> <a href="https://mstdn.social/tags/imaging" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>imaging</span></a> <a href="https://mstdn.social/tags/MicroManager" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>MicroManager</span></a></p>
JMLR<p>&#39;Regret Analysis of Bilateral Trade with a Smoothed Adversary&#39;, by Nicolò Cesa-Bianchi, Tommaso Cesari, Roberto Colomboni, Federico Fusco, Stefano Leonardi.</p><p><a href="http://jmlr.org/papers/v25/23-1627.html" target="_blank" rel="nofollow noopener" translate="no"><span class="invisible">http://</span><span class="ellipsis">jmlr.org/papers/v25/23-1627.ht</span><span class="invisible">ml</span></a> <br /> <br /><a href="https://sigmoid.social/tags/adversary" class="mention hashtag" rel="tag">#<span>adversary</span></a> <a href="https://sigmoid.social/tags/buyers" class="mention hashtag" rel="tag">#<span>buyers</span></a> <a href="https://sigmoid.social/tags/optimal" class="mention hashtag" rel="tag">#<span>optimal</span></a></p>
JMLR<p>&#39;On the Optimality of Misspecified Spectral Algorithms&#39;, by Haobo Zhang, Yicheng Li, Qian Lin.</p><p><a href="http://jmlr.org/papers/v25/23-0383.html" target="_blank" rel="nofollow noopener" translate="no"><span class="invisible">http://</span><span class="ellipsis">jmlr.org/papers/v25/23-0383.ht</span><span class="invisible">ml</span></a> <br /> <br /><a href="https://sigmoid.social/tags/optimality" class="mention hashtag" rel="tag">#<span>optimality</span></a> <a href="https://sigmoid.social/tags/optimal" class="mention hashtag" rel="tag">#<span>optimal</span></a> <a href="https://sigmoid.social/tags/spectral" class="mention hashtag" rel="tag">#<span>spectral</span></a></p>