sigmoid.social is one of the many independent Mastodon servers you can use to participate in the fediverse.
A social space for people researching, working with, or just interested in AI!

Server stats:

654
active users

#optimizers

0 posts0 participants0 posts today
Erika Varis Doggett<p>This MicroAdam paper from <a href="https://mas.to/tags/NeurIPS2024" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>NeurIPS2024</span></a> is nicely written! The algorithm is walked through in plain language first, and all the equations and proofs placed in the appendix. Super understandable, kudos to the authors. <br><a href="https://arxiv.org/abs/2405.15593" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://</span><span class="">arxiv.org/abs/2405.15593</span><span class="invisible"></span></a><br><a href="https://mas.to/tags/AI" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>AI</span></a> <a href="https://mas.to/tags/MachineLearning" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>MachineLearning</span></a> <a href="https://mas.to/tags/LLMs" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>LLMs</span></a> <a href="https://mas.to/tags/optimizers" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>optimizers</span></a></p>
JMLR<p>&#39;PROMISE: Preconditioned Stochastic Optimization Methods by Incorporating Scalable Curvature Estimates&#39;, by Zachary Frangella, Pratik Rathore, Shipu Zhao, Madeleine Udell.</p><p><a href="http://jmlr.org/papers/v25/23-1187.html" target="_blank" rel="nofollow noopener noreferrer" translate="no"><span class="invisible">http://</span><span class="ellipsis">jmlr.org/papers/v25/23-1187.ht</span><span class="invisible">ml</span></a> <br /> <br /><a href="https://sigmoid.social/tags/optimizers" class="mention hashtag" rel="tag">#<span>optimizers</span></a> <a href="https://sigmoid.social/tags/optimization" class="mention hashtag" rel="tag">#<span>optimization</span></a> <a href="https://sigmoid.social/tags/preconditioned" class="mention hashtag" rel="tag">#<span>preconditioned</span></a></p>
JMLR<p>&#39;PyPop7: A Pure-Python Library for Population-Based Black-Box Optimization&#39;, by Qiqi Duan et al.</p><p><a href="http://jmlr.org/papers/v25/23-0386.html" target="_blank" rel="nofollow noopener noreferrer" translate="no"><span class="invisible">http://</span><span class="ellipsis">jmlr.org/papers/v25/23-0386.ht</span><span class="invisible">ml</span></a> <br /> <br /><a href="https://sigmoid.social/tags/optimizers" class="mention hashtag" rel="tag">#<span>optimizers</span></a> <a href="https://sigmoid.social/tags/optimization" class="mention hashtag" rel="tag">#<span>optimization</span></a> <a href="https://sigmoid.social/tags/pypop7" class="mention hashtag" rel="tag">#<span>pypop7</span></a></p>
JMLR<p>&#39;Multi-Objective Neural Architecture Search by Learning Search Space Partitions&#39;, by Yiyang Zhao, Linnan Wang, Tian Guo.</p><p><a href="http://jmlr.org/papers/v25/23-1013.html" target="_blank" rel="nofollow noopener noreferrer" translate="no"><span class="invisible">http://</span><span class="ellipsis">jmlr.org/papers/v25/23-1013.ht</span><span class="invisible">ml</span></a> <br /> <br /><a href="https://sigmoid.social/tags/optimizers" class="mention hashtag" rel="tag">#<span>optimizers</span></a> <a href="https://sigmoid.social/tags/optimizer" class="mention hashtag" rel="tag">#<span>optimizer</span></a> <a href="https://sigmoid.social/tags/optimizations" class="mention hashtag" rel="tag">#<span>optimizations</span></a></p>
JMLR<p>&#39;Robust Black-Box Optimization for Stochastic Search and Episodic Reinforcement Learning&#39;, by Maximilian Hüttenrauch, Gerhard Neumann.</p><p><a href="http://jmlr.org/papers/v25/22-0564.html" target="_blank" rel="nofollow noopener noreferrer" translate="no"><span class="invisible">http://</span><span class="ellipsis">jmlr.org/papers/v25/22-0564.ht</span><span class="invisible">ml</span></a> <br /> <br /><a href="https://sigmoid.social/tags/reinforcement" class="mention hashtag" rel="tag">#<span>reinforcement</span></a> <a href="https://sigmoid.social/tags/optimizers" class="mention hashtag" rel="tag">#<span>optimizers</span></a> <a href="https://sigmoid.social/tags/optimizes" class="mention hashtag" rel="tag">#<span>optimizes</span></a></p>
JMLR<p>&#39;Neural Feature Learning in Function Space&#39;, by Xiangxiang Xu, Lizhong Zheng.</p><p><a href="http://jmlr.org/papers/v25/23-1202.html" target="_blank" rel="nofollow noopener noreferrer" translate="no"><span class="invisible">http://</span><span class="ellipsis">jmlr.org/papers/v25/23-1202.ht</span><span class="invisible">ml</span></a> <br /> <br /><a href="https://sigmoid.social/tags/features" class="mention hashtag" rel="tag">#<span>features</span></a> <a href="https://sigmoid.social/tags/feature" class="mention hashtag" rel="tag">#<span>feature</span></a> <a href="https://sigmoid.social/tags/optimizers" class="mention hashtag" rel="tag">#<span>optimizers</span></a></p>
JMLR<p>&#39;Win: Weight-Decay-Integrated Nesterov Acceleration for Faster Network Training&#39;, by Pan Zhou, Xingyu Xie, Zhouchen Lin, Kim-Chuan Toh, Shuicheng Yan.</p><p><a href="http://jmlr.org/papers/v25/23-1073.html" target="_blank" rel="nofollow noopener noreferrer" translate="no"><span class="invisible">http://</span><span class="ellipsis">jmlr.org/papers/v25/23-1073.ht</span><span class="invisible">ml</span></a> <br /> <br /><a href="https://sigmoid.social/tags/accelerated" class="mention hashtag" rel="tag">#<span>accelerated</span></a> <a href="https://sigmoid.social/tags/optimizers" class="mention hashtag" rel="tag">#<span>optimizers</span></a> <a href="https://sigmoid.social/tags/adaptive" class="mention hashtag" rel="tag">#<span>adaptive</span></a></p>
JMLR<p>&#39;Scaling the Convex Barrier with Sparse Dual Algorithms&#39;, by Alessandro De Palma, Harkirat Singh Behl, Rudy Bunel, Philip H.S. Torr, M. Pawan Kumar.</p><p><a href="http://jmlr.org/papers/v25/21-0076.html" target="_blank" rel="nofollow noopener noreferrer" translate="no"><span class="invisible">http://</span><span class="ellipsis">jmlr.org/papers/v25/21-0076.ht</span><span class="invisible">ml</span></a> <br /> <br /><a href="https://sigmoid.social/tags/optimizers" class="mention hashtag" rel="tag">#<span>optimizers</span></a> <a href="https://sigmoid.social/tags/sparse" class="mention hashtag" rel="tag">#<span>sparse</span></a> <a href="https://sigmoid.social/tags/dual" class="mention hashtag" rel="tag">#<span>dual</span></a></p>
JMLR<p>&#39;Polygonal Unadjusted Langevin Algorithms: Creating stable and efficient adaptive algorithms for neural networks&#39;, by Dong-Young Lim, Sotirios Sabanis.</p><p><a href="http://jmlr.org/papers/v25/22-0796.html" target="_blank" rel="nofollow noopener noreferrer" translate="no"><span class="invisible">http://</span><span class="ellipsis">jmlr.org/papers/v25/22-0796.ht</span><span class="invisible">ml</span></a> <br /> <br /><a href="https://sigmoid.social/tags/langevin" class="mention hashtag" rel="tag">#<span>langevin</span></a> <a href="https://sigmoid.social/tags/adaptive" class="mention hashtag" rel="tag">#<span>adaptive</span></a> <a href="https://sigmoid.social/tags/optimizers" class="mention hashtag" rel="tag">#<span>optimizers</span></a></p>
JMLR<p>&#39;Improving physics-informed neural networks with meta-learned optimization&#39;, by Alex Bihlo.</p><p><a href="http://jmlr.org/papers/v25/23-0356.html" target="_blank" rel="nofollow noopener noreferrer" translate="no"><span class="invisible">http://</span><span class="ellipsis">jmlr.org/papers/v25/23-0356.ht</span><span class="invisible">ml</span></a> <br /> <br /><a href="https://sigmoid.social/tags/optimizers" class="mention hashtag" rel="tag">#<span>optimizers</span></a> <a href="https://sigmoid.social/tags/learnable" class="mention hashtag" rel="tag">#<span>learnable</span></a> <a href="https://sigmoid.social/tags/learned" class="mention hashtag" rel="tag">#<span>learned</span></a></p>
Published papers at TMLR<p>A DNN Optimizer that Improves over AdaBelief by Suppression of the Adaptive Stepsize Range</p><p>Guoqiang Zhang, Kenta Niwa, W. Bastiaan Kleijn</p><p>Action editor: Rémi Flamary.</p><p><a href="https://openreview.net/forum?id=VI2JjIfU37" target="_blank" rel="nofollow noopener noreferrer" translate="no"><span class="invisible">https://</span><span class="ellipsis">openreview.net/forum?id=VI2JjI</span><span class="invisible">fU37</span></a></p><p><a href="https://sigmoid.social/tags/optimizers" class="mention hashtag" rel="tag">#<span>optimizers</span></a> <a href="https://sigmoid.social/tags/imagenet" class="mention hashtag" rel="tag">#<span>imagenet</span></a> <a href="https://sigmoid.social/tags/optimizer" class="mention hashtag" rel="tag">#<span>optimizer</span></a></p>
New Submissions to TMLR<p>Auto-configuring Exploration-Exploitation Tradeoff in Population-Based Optimization: A Deep Reinforcement Learning Approach</p><p><a href="https://openreview.net/forum?id=U2viPsXLxw" target="_blank" rel="nofollow noopener noreferrer" translate="no"><span class="invisible">https://</span><span class="ellipsis">openreview.net/forum?id=U2viPs</span><span class="invisible">XLxw</span></a></p><p><a href="https://sigmoid.social/tags/exploration" class="mention hashtag" rel="tag">#<span>exploration</span></a> <a href="https://sigmoid.social/tags/optimizers" class="mention hashtag" rel="tag">#<span>optimizers</span></a> <a href="https://sigmoid.social/tags/reinforcement" class="mention hashtag" rel="tag">#<span>reinforcement</span></a></p>
New Submissions to TMLR<p>Learning to Optimize Quasi-Newton Methods</p><p><a href="https://openreview.net/forum?id=Ns2X7Azudy" target="_blank" rel="nofollow noopener noreferrer" translate="no"><span class="invisible">https://</span><span class="ellipsis">openreview.net/forum?id=Ns2X7A</span><span class="invisible">zudy</span></a></p><p><a href="https://sigmoid.social/tags/optimizers" class="mention hashtag" rel="tag">#<span>optimizers</span></a> <a href="https://sigmoid.social/tags/optimizer" class="mention hashtag" rel="tag">#<span>optimizer</span></a> <a href="https://sigmoid.social/tags/hessian" class="mention hashtag" rel="tag">#<span>hessian</span></a></p>
New Submissions to TMLR<p>The Slingshot Effect: A Late-Stage Optimization Anomaly in Adaptive Gradient Methods</p><p><a href="https://openreview.net/forum?id=OZbn8ULouY" target="_blank" rel="nofollow noopener noreferrer" translate="no"><span class="invisible">https://</span><span class="ellipsis">openreview.net/forum?id=OZbn8U</span><span class="invisible">LouY</span></a></p><p><a href="https://sigmoid.social/tags/adaptive" class="mention hashtag" rel="tag">#<span>adaptive</span></a> <a href="https://sigmoid.social/tags/optimizers" class="mention hashtag" rel="tag">#<span>optimizers</span></a> <a href="https://sigmoid.social/tags/slingshot" class="mention hashtag" rel="tag">#<span>slingshot</span></a></p>
Published papers at TMLR<p>Personalized Federated Learning: A Unified Framework and Universal Optimization Techniques</p><p>Filip Hanzely, Boxin Zhao, mladen kolar</p><p>Action editor: Naman Agarwal.</p><p><a href="https://openreview.net/forum?id=ilHM31lXC4" target="_blank" rel="nofollow noopener noreferrer" translate="no"><span class="invisible">https://</span><span class="ellipsis">openreview.net/forum?id=ilHM31</span><span class="invisible">lXC4</span></a></p><p><a href="https://sigmoid.social/tags/optimizers" class="mention hashtag" rel="tag">#<span>optimizers</span></a> <a href="https://sigmoid.social/tags/personalized" class="mention hashtag" rel="tag">#<span>personalized</span></a> <a href="https://sigmoid.social/tags/optimization" class="mention hashtag" rel="tag">#<span>optimization</span></a></p>
New Submissions to TMLR<p>A DNN Optimizer that Improves over AdaBelief by Suppression of the Adaptive Stepsize Range</p><p><a href="https://openreview.net/forum?id=VI2JjIfU37" target="_blank" rel="nofollow noopener noreferrer" translate="no"><span class="invisible">https://</span><span class="ellipsis">openreview.net/forum?id=VI2JjI</span><span class="invisible">fU37</span></a></p><p><a href="https://sigmoid.social/tags/optimizers" class="mention hashtag" rel="tag">#<span>optimizers</span></a> <a href="https://sigmoid.social/tags/imagenet" class="mention hashtag" rel="tag">#<span>imagenet</span></a> <a href="https://sigmoid.social/tags/optimizer" class="mention hashtag" rel="tag">#<span>optimizer</span></a></p>
Published papers at TMLR<p>Constrained Parameter Inference as a Principle for Learning</p><p>Nasir Ahmad, Ellen Schrader, Marcel van Gerven</p><p><a href="https://openreview.net/forum?id=CUDdbTT1QC" target="_blank" rel="nofollow noopener noreferrer" translate="no"><span class="invisible">https://</span><span class="ellipsis">openreview.net/forum?id=CUDdbT</span><span class="invisible">T1QC</span></a></p><p><a href="https://sigmoid.social/tags/backpropagation" class="mention hashtag" rel="tag">#<span>backpropagation</span></a> <a href="https://sigmoid.social/tags/neuron" class="mention hashtag" rel="tag">#<span>neuron</span></a> <a href="https://sigmoid.social/tags/optimizers" class="mention hashtag" rel="tag">#<span>optimizers</span></a></p>