sigmoid.social is one of the many independent Mastodon servers you can use to participate in the fediverse.
A social space for people researching, working with, or just interested in AI!

Server stats:

656
active users

#parameterized

0 posts0 participants0 posts today
sumanthvepa<p>If you are writing individual unittests, you may be doing testing wrong.</p><p>I finally <a href="https://mastodon.social/tags/parameterized" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>parameterized</span></a> all the <a href="https://mastodon.social/tags/python" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>python</span></a> <a href="https://mastodon.social/tags/unittest" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>unittest</span></a> for my deployment tool. </p><p>This is the way testing should be done. </p><p>The way testing is taught, with single unit tests is very misleading.</p><p>With parameterized tests, I can automatically test a significant portion of the input space of function or program. </p><p><a href="https://mastodon.social/tags/testing" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>testing</span></a> <a href="https://mastodon.social/tags/softwaredevelopment" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>softwaredevelopment</span></a> <a href="https://mastodon.social/tags/programming" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>programming</span></a></p>
JMLR<p>&#39;Learning an Explicit Hyper-parameter Prediction Function Conditioned on Tasks&#39;, by Jun Shu, Deyu Meng, Zongben Xu.</p><p><a href="http://jmlr.org/papers/v24/21-0742.html" target="_blank" rel="nofollow noopener noreferrer" translate="no"><span class="invisible">http://</span><span class="ellipsis">jmlr.org/papers/v24/21-0742.ht</span><span class="invisible">ml</span></a> <br /> <br /><a href="https://sigmoid.social/tags/learned" class="mention hashtag" rel="tag">#<span>learned</span></a> <a href="https://sigmoid.social/tags/parameterized" class="mention hashtag" rel="tag">#<span>parameterized</span></a> <a href="https://sigmoid.social/tags/generalization" class="mention hashtag" rel="tag">#<span>generalization</span></a></p>
New Submissions to TMLR<p>PAVI: Plate-Amortized Variational Inference</p><p><a href="https://openreview.net/forum?id=vlY9GDCCA6" target="_blank" rel="nofollow noopener noreferrer" translate="no"><span class="invisible">https://</span><span class="ellipsis">openreview.net/forum?id=vlY9GD</span><span class="invisible">CCA6</span></a></p><p><a href="https://sigmoid.social/tags/generative" class="mention hashtag" rel="tag">#<span>generative</span></a> <a href="https://sigmoid.social/tags/variational" class="mention hashtag" rel="tag">#<span>variational</span></a> <a href="https://sigmoid.social/tags/parameterized" class="mention hashtag" rel="tag">#<span>parameterized</span></a></p>