sigmoid.social is one of the many independent Mastodon servers you can use to participate in the fediverse.
A social space for people researching, working with, or just interested in AI!

Server stats:

599
active users

#semidefinite

0 posts0 participants0 posts today
JMLR<p>&#39;Localisation of Regularised and Multiview Support Vector Machine Learning&#39;, by Aurelian Gheondea, Cankat Tilki.</p><p><a href="http://jmlr.org/papers/v25/23-0522.html" target="_blank" rel="nofollow noopener" translate="no"><span class="invisible">http://</span><span class="ellipsis">jmlr.org/papers/v25/23-0522.ht</span><span class="invisible">ml</span></a> <br /> <br /><a href="https://sigmoid.social/tags/lossfunctions" class="mention hashtag" rel="tag">#<span>lossfunctions</span></a> <a href="https://sigmoid.social/tags/kernels" class="mention hashtag" rel="tag">#<span>kernels</span></a> <a href="https://sigmoid.social/tags/semidefinite" class="mention hashtag" rel="tag">#<span>semidefinite</span></a></p>
JMLR<p>&#39;Distributed Kernel-Driven Data Clustering&#39;, by Ioannis Schizas.</p><p><a href="http://jmlr.org/papers/v25/23-0669.html" target="_blank" rel="nofollow noopener" translate="no"><span class="invisible">http://</span><span class="ellipsis">jmlr.org/papers/v25/23-0669.ht</span><span class="invisible">ml</span></a> <br /> <br /><a href="https://sigmoid.social/tags/clustering" class="mention hashtag" rel="tag">#<span>clustering</span></a> <a href="https://sigmoid.social/tags/distributed" class="mention hashtag" rel="tag">#<span>distributed</span></a> <a href="https://sigmoid.social/tags/semidefinite" class="mention hashtag" rel="tag">#<span>semidefinite</span></a></p>
JMLR<p>&#39;Efficient Convex Algorithms for Universal Kernel Learning&#39;, by Aleksandr Talitckii, Brendon Colbert, Matthew M. Peet.</p><p><a href="http://jmlr.org/papers/v25/23-0528.html" target="_blank" rel="nofollow noopener" translate="no"><span class="invisible">http://</span><span class="ellipsis">jmlr.org/papers/v25/23-0528.ht</span><span class="invisible">ml</span></a> <br /> <br /><a href="https://sigmoid.social/tags/semidefinite" class="mention hashtag" rel="tag">#<span>semidefinite</span></a> <a href="https://sigmoid.social/tags/kernels" class="mention hashtag" rel="tag">#<span>kernels</span></a> <a href="https://sigmoid.social/tags/classification" class="mention hashtag" rel="tag">#<span>classification</span></a></p>
Published papers at TMLR<p>Denise: Deep Robust Principal Component Analysis for Positive Semidefinite Matrices</p><p>Calypso Herrera, Florian Krach, Anastasis Kratsios, Pierre Ruyssen, Josef Teichmann</p><p>Action editor: Stephen Becker.</p><p><a href="https://openreview.net/forum?id=D45gGvUZp2" target="_blank" rel="nofollow noopener" translate="no"><span class="invisible">https://</span><span class="ellipsis">openreview.net/forum?id=D45gGv</span><span class="invisible">UZp2</span></a></p><p><a href="https://sigmoid.social/tags/pca" class="mention hashtag" rel="tag">#<span>pca</span></a> <a href="https://sigmoid.social/tags/semidefinite" class="mention hashtag" rel="tag">#<span>semidefinite</span></a> <a href="https://sigmoid.social/tags/sparse" class="mention hashtag" rel="tag">#<span>sparse</span></a></p>
New Submissions to TMLR<p>Denise: Deep Robust Principal Component Analysis for Positive Semidefinite Matrices</p><p><a href="https://openreview.net/forum?id=D45gGvUZp2" target="_blank" rel="nofollow noopener" translate="no"><span class="invisible">https://</span><span class="ellipsis">openreview.net/forum?id=D45gGv</span><span class="invisible">UZp2</span></a></p><p><a href="https://sigmoid.social/tags/pca" class="mention hashtag" rel="tag">#<span>pca</span></a> <a href="https://sigmoid.social/tags/semidefinite" class="mention hashtag" rel="tag">#<span>semidefinite</span></a> <a href="https://sigmoid.social/tags/robust" class="mention hashtag" rel="tag">#<span>robust</span></a></p>