sigmoid.social is one of the many independent Mastodon servers you can use to participate in the fediverse.
A social space for people researching, working with, or just interested in AI!

Server stats:

595
active users

#simplicialcomplex

0 posts0 participants0 posts today
Charo del Genio<p>New paper!</p><p>If you want to assess the stability of the synchronization of a system of identical oscillators, you can use the Master Stability Function. However, what do you do in a real-world case, when the elements of the system are not exactly identical? We show how to extend the formalism and use it also when there are many-body interactions, such as in a simplicial complex.</p><p><a href="https://journals.aps.org/prresearch/abstract/10.1103/ml7b-r35h" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">journals.aps.org/prresearch/ab</span><span class="invisible">stract/10.1103/ml7b-r35h</span></a></p><p><a href="https://mathstodon.xyz/tags/mathematics" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>mathematics</span></a> <a href="https://mathstodon.xyz/tags/physics" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>physics</span></a> <a href="https://mathstodon.xyz/tags/science" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>science</span></a> <a href="https://mathstodon.xyz/tags/synchronization" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>synchronization</span></a> <a href="https://mathstodon.xyz/tags/stability" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>stability</span></a> <a href="https://mathstodon.xyz/tags/chaos" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>chaos</span></a> <a href="https://mathstodon.xyz/tags/MSF" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>MSF</span></a> <a href="https://mathstodon.xyz/tags/simplicialcomplex" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>simplicialcomplex</span></a> <a href="https://mathstodon.xyz/tags/complexity" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>complexity</span></a> <a href="https://mathstodon.xyz/tags/nonlinear" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>nonlinear</span></a> <a href="https://mathstodon.xyz/tags/dynamics" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>dynamics</span></a></p>
Charo del Genio<p>If you don't have access to the journal, you can download it from here</p><p><a href="https://charodelgenio.weebly.com/recon.html" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">charodelgenio.weebly.com/recon</span><span class="invisible">.html</span></a></p><p><a href="https://mathstodon.xyz/tags/physics" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>physics</span></a> <a href="https://mathstodon.xyz/tags/mathematics" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>mathematics</span></a> <a href="https://mathstodon.xyz/tags/networks" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>networks</span></a> <a href="https://mathstodon.xyz/tags/reconstruction" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>reconstruction</span></a> <a href="https://mathstodon.xyz/tags/higherorder" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>higherorder</span></a> <a href="https://mathstodon.xyz/tags/simplicialcomplex" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>simplicialcomplex</span></a> <a href="https://mathstodon.xyz/tags/hypergraphs" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>hypergraphs</span></a> <a href="https://mathstodon.xyz/tags/evolutionarygames" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>evolutionarygames</span></a> <a href="https://mathstodon.xyz/tags/transient" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>transient</span></a> <a href="https://mathstodon.xyz/tags/dynamics" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>dynamics</span></a> <a href="https://mathstodon.xyz/tags/algorithm" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>algorithm</span></a></p>
Charo del Genio<p>The paper is on Physical Review E</p><p><a href="https://journals.aps.org/pre/abstract/10.1103/PhysRevE.111.044304" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">journals.aps.org/pre/abstract/</span><span class="invisible">10.1103/PhysRevE.111.044304</span></a></p><p><a href="https://mathstodon.xyz/tags/physics" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>physics</span></a> <a href="https://mathstodon.xyz/tags/mathematics" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>mathematics</span></a> <a href="https://mathstodon.xyz/tags/networks" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>networks</span></a> <a href="https://mathstodon.xyz/tags/reconstruction" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>reconstruction</span></a> <a href="https://mathstodon.xyz/tags/higherorder" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>higherorder</span></a> <a href="https://mathstodon.xyz/tags/simplicialcomplex" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>simplicialcomplex</span></a> <a href="https://mathstodon.xyz/tags/hypergraphs" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>hypergraphs</span></a> <a href="https://mathstodon.xyz/tags/evolutionarygames" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>evolutionarygames</span></a> <a href="https://mathstodon.xyz/tags/transient" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>transient</span></a> <a href="https://mathstodon.xyz/tags/dynamics" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>dynamics</span></a> <a href="https://mathstodon.xyz/tags/algorithm" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>algorithm</span></a></p>
Charo del Genio<p>New paper, just out.</p><p>Often, in real-world situations, one does not know the full structure of a network. However, at the same time, one can often observe some interactions that take place on it, and may be interested in knowing its full structure. For example, one may be detecting some partial criminal activity and may want to determine the whole organization. We consider higher-order networks, which are structures with many-body interactions, and specifically simplicial complexes, and show that one can reconstruct a whole network almost perfectly simply by observing the transient of the dynamics that takes place on it. In fact, we give 3 different algorithms to do it, with different complexities and accuracies, so you can choose which one suits you best.</p><p><a href="https://mathstodon.xyz/tags/physics" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>physics</span></a> <a href="https://mathstodon.xyz/tags/mathematics" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>mathematics</span></a> <a href="https://mathstodon.xyz/tags/networks" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>networks</span></a> <a href="https://mathstodon.xyz/tags/reconstruction" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>reconstruction</span></a> <a href="https://mathstodon.xyz/tags/higherorder" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>higherorder</span></a> <a href="https://mathstodon.xyz/tags/simplicialcomplex" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>simplicialcomplex</span></a> <a href="https://mathstodon.xyz/tags/hypergraphs" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>hypergraphs</span></a> <a href="https://mathstodon.xyz/tags/evolutionarygames" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>evolutionarygames</span></a> <a href="https://mathstodon.xyz/tags/transient" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>transient</span></a> <a href="https://mathstodon.xyz/tags/dynamics" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>dynamics</span></a> <a href="https://mathstodon.xyz/tags/algorithm" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>algorithm</span></a></p>
AlexCrimi<p><a href="https://mstdn.social/tags/simplicialcomplex" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>simplicialcomplex</span></a> + <a href="https://mstdn.social/tags/Causality" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Causality</span></a> +<a href="https://mstdn.social/tags/Reservoircomputing" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Reservoircomputing</span></a>:<br>"Higher-order Granger reservoir computing: simultaneously achieving scalable complex structures inference and accurate dynamics prediction" <a href="https://www.nature.com/articles/s41467-024-46852-1" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://www.</span><span class="ellipsis">nature.com/articles/s41467-024</span><span class="invisible">-46852-1</span></a></p><p><a href="https://mstdn.social/tags/dynamicalsystem" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>dynamicalsystem</span></a> <a href="https://mstdn.social/tags/ML" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>ML</span></a> <a href="https://mstdn.social/tags/AI" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>AI</span></a></p>