sigmoid.social is one of the many independent Mastodon servers you can use to participate in the fediverse.
A social space for people researching, working with, or just interested in AI!

Server stats:

612
active users

#TimeSeries

1 post1 participant0 posts today
Steven Sanderson<p>Today I did another post on the diff() function in base <a href="https://rstats.me/tags/R" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>R</span></a></p><p>Post: <a href="https://www.spsanderson.com/steveondata/posts/2025-07-07/" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://www.</span><span class="ellipsis">spsanderson.com/steveondata/po</span><span class="invisible">sts/2025-07-07/</span></a></p><p><a href="https://rstats.me/tags/R" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>R</span></a> <a href="https://rstats.me/tags/RStats" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>RStats</span></a> <a href="https://rstats.me/tags/RProgramming" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>RProgramming</span></a> <a href="https://rstats.me/tags/Data" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Data</span></a> <a href="https://rstats.me/tags/Diff" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Diff</span></a> <a href="https://rstats.me/tags/Differencing" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Differencing</span></a> <a href="https://rstats.me/tags/Vector" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Vector</span></a> <a href="https://rstats.me/tags/TimeSeries" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>TimeSeries</span></a> <a href="https://rstats.me/tags/Blog" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Blog</span></a></p>
Rami Krispin :unverified:<p>I had the pleasure of presenting this week at the <span class="h-card" translate="no"><a href="https://fosstodon.org/@rladiesrome" class="u-url mention" rel="nofollow noopener" target="_blank">@<span>rladiesrome</span></a></span> meetup about forecasting with linear regression. This workshop covered the following topics:<br>🔹Time series decomposition<br>🔹Correlation and seasonal analysis<br>🔹Modeling trend and seasonality<br>🔹Using piecewise regression to model change in trend<br>🔹Residuals analysis</p><p>The workshop recording is available online:<br><a href="https://www.youtube.com/watch?v=lk3a3GQ7kc8" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://www.</span><span class="ellipsis">youtube.com/watch?v=lk3a3GQ7kc</span><span class="invisible">8</span></a></p><p><a href="https://mstdn.social/tags/RStats" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>RStats</span></a> <a href="https://mstdn.social/tags/DataScience" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>DataScience</span></a> <a href="https://mstdn.social/tags/timeseries" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>timeseries</span></a> <a href="https://mstdn.social/tags/forecasting" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>forecasting</span></a></p>
R-Ladies Rome<p>🎥 Missed <span class="h-card" translate="no"><a href="https://mstdn.social/@ramikrispin" class="u-url mention" rel="nofollow noopener" target="_blank">@<span>ramikrispin</span></a></span> <span class="h-card" translate="no"><a href="https://fosstodon.org/@rladiesrome" class="u-url mention" rel="nofollow noopener" target="_blank">@<span>rladiesrome</span></a></span> on using linear regression for forecasting time series? No worries! Catch the beginner-friendly session on YouTube</p><p>Enhance your skills now read our blog post and watch the recording: 👉 <a href="https://rladiesrome.org/talks/2025/meetup/07032025_RamiKrispin.html" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">rladiesrome.org/talks/2025/mee</span><span class="invisible">tup/07032025_RamiKrispin.html</span></a> <br><a href="https://fosstodon.org/tags/Rstats" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Rstats</span></a> <a href="https://fosstodon.org/tags/Forecasting" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Forecasting</span></a> <a href="https://fosstodon.org/tags/timeseries" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>timeseries</span></a></p>
R-Ladies Rome<p>📢 Don’t forget!<br>Join us today at 6PM CEST for our R-Ladies Rome workshop with @@ramikrispin:<br>“Forecasting Time Series with Linear Regression: A Feature-Driven Approach” 📈</p><p>🔗 <a href="https://www.meetup.com/rladies-rome/events/308574280" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://www.</span><span class="ellipsis">meetup.com/rladies-rome/events</span><span class="invisible">/308574280</span></a> </p><p><a href="https://fosstodon.org/tags/rstats" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>rstats</span></a> <a href="https://fosstodon.org/tags/timeseries" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>timeseries</span></a> <a href="https://fosstodon.org/tags/DataScience" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>DataScience</span></a> <a href="https://fosstodon.org/tags/RLadiesRome" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>RLadiesRome</span></a> <a href="https://fosstodon.org/tags/Rusers" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Rusers</span></a> <a href="https://fosstodon.org/tags/MachineLearning" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>MachineLearning</span></a> <a href="https://fosstodon.org/tags/OpenSource" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>OpenSource</span></a></p>
IB Teguh TM<p>Supercharge your data work! Our GPU Time Series Analysis tutorial shows you how to use cuDF &amp; Python for incredible speed. Boost performance now. <a href="https://mastodon.social/tags/GPUDataScience" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>GPUDataScience</span></a> <a href="https://mastodon.social/tags/TimeSeries" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>TimeSeries</span></a> <a href="https://mastodon.social/tags/cuDF" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>cuDF</span></a> <a href="https://mastodon.social/tags/Python" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Python</span></a> <a href="https://mastodon.social/tags/BigData" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>BigData</span></a> <a href="https://mastodon.social/tags/DataAnalysis" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>DataAnalysis</span></a> <a href="https://mastodon.social/tags/NVIDIA" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>NVIDIA</span></a></p><p><a href="https://teguhteja.id/gpu-time-series-analysis-cudf-tutorial/" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">teguhteja.id/gpu-time-series-a</span><span class="invisible">nalysis-cudf-tutorial/</span></a></p>
Ontopic<p>Rich modelling capabilities and super fast time series:</p><p>The Ontop virtual knowledge graph engine got support for TDEngine time series database with this pull request: <a href="https://github.com/ontop/ontop/pull/875" target="_blank" rel="nofollow noopener" translate="no"><span class="invisible">https://</span><span class="">github.com/ontop/ontop/pull/875</span><span class="invisible"></span></a></p><p>This will be one of the many exciting new features of the next stable release of Ontop.</p><p><a href="https://sigmoid.social/tags/knowledgegraph" class="mention hashtag" rel="tag">#<span>knowledgegraph</span></a> <br /><a href="https://sigmoid.social/tags/timeseries" class="mention hashtag" rel="tag">#<span>timeseries</span></a></p>
screwlisp<p><a href="https://gamerplus.org/tags/programming" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>programming</span></a> <a href="https://gamerplus.org/tags/graphing" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>graphing</span></a> <a href="https://gamerplus.org/tags/plotting" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>plotting</span></a> <a href="https://gamerplus.org/tags/visualization" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>visualization</span></a> <a href="https://gamerplus.org/tags/timeSeries" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>timeSeries</span></a> <a href="https://gamerplus.org/tags/gnuplot" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>gnuplot</span></a> <a href="https://gamerplus.org/tags/commonLisp" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>commonLisp</span></a> <a href="https://gamerplus.org/tags/lisp" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>lisp</span></a> <a href="https://gamerplus.org/tags/example" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>example</span></a> <a href="https://screwlisp.small-web.org/programming/common-lisp-invoking-gnuplot/" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">screwlisp.small-web.org/progra</span><span class="invisible">mming/common-lisp-invoking-gnuplot/</span></a><br>I could not even find my own previous articles and <a href="https://gamerplus.org/tags/demos" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>demos</span></a> of this online!</p><p>I used <a href="https://gamerplus.org/tags/uiop" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>uiop</span></a> run-program to handle one specific case like</p><p>(gnuplot "bad title" '((1 2) (3 4)) '((5 6) (7 8)))<br>or equivalently,<br>(apply 'gnuplot "bad title" '(((1 2) (3 4)) ((5 6) (7 8))))</p><p>Do you personally have an example? I remember it being hard to dredge up gnuplot examples but this is beyond silly.</p>
Steven P. Sanderson II, MPH<p>📊 Just released: RandomWalker 0.3.0! Now you can generate random walks in up to 3 dimensions. This is a must-read for R programmers looking to enhance their simulations.</p><p>Dive into the details: [<a href="https://www.spsanderson.com/steveondata/posts/2025-05-09/" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://www.</span><span class="ellipsis">spsanderson.com/steveondata/po</span><span class="invisible">sts/2025-05-09/</span></a></p><p><a href="https://mstdn.social/tags/Data" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Data</span></a> <a href="https://mstdn.social/tags/RLang" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>RLang</span></a> <a href="https://mstdn.social/tags/Stats" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Stats</span></a> <a href="https://mstdn.social/tags/RData" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>RData</span></a> <a href="https://mstdn.social/tags/Blog" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Blog</span></a> <a href="https://mstdn.social/tags/CRAN" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>CRAN</span></a> <a href="https://mstdn.social/tags/RStats" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>RStats</span></a> <a href="https://mstdn.social/tags/TimeSeries" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>TimeSeries</span></a> <a href="https://mstdn.social/tags/RandomWalker" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>RandomWalker</span></a></p>
williemaize<p>📊 New to time series forecasting?<br>Learn ARIMA modeling in this clear, hands-on guide from DataCamp!<br>Perfect for data science beginners.<br>🔗 <a href="https://www.datacamp.com/tutorial/arima" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://www.</span><span class="">datacamp.com/tutorial/arima</span><span class="invisible"></span></a><br><a href="https://mastodon.social/tags/ARIMA" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>ARIMA</span></a> <a href="https://mastodon.social/tags/TimeSeries" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>TimeSeries</span></a> <a href="https://mastodon.social/tags/DataScience" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>DataScience</span></a> <a href="https://mastodon.social/tags/Forecasting" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Forecasting</span></a></p>
PaquitoBernard<p>I am looking for a postdoc 'Environmental and behavioral health in a changing climate' (1/2)</p><p>2 years in <a href="https://masto.ai/tags/Rennes" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Rennes</span></a> <a href="https://masto.ai/tags/france" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>france</span></a> <a href="https://masto.ai/tags/rstats" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>rstats</span></a> <a href="https://masto.ai/tags/timeseries" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>timeseries</span></a> </p><p>We are looking for a postdoctoral researcher to help us understand the short-term impacts of environmental conditions on mental health, sleep and physical activity related behaviors. Future findings will help us better anticipate present and future consequences of climate change on bike use and sleep. </p><p><a href="https://masto.ai/tags/academia" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>academia</span></a> <a href="https://masto.ai/tags/research" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>research</span></a> <a href="https://masto.ai/tags/climatechange" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>climatechange</span></a> <a href="https://masto.ai/tags/health" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>health</span></a></p>
Rami Krispin :unverified:<p>Time Series Analysis with StatsModels&nbsp;</p><p>This workshop from the PyData Global 2024 conference by Allen Downey provides an introduction to time series analysis with the StatsModels Python library.</p><p><a href="https://www.youtube.com/watch?v=foMbacbuAQk" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://www.</span><span class="ellipsis">youtube.com/watch?v=foMbacbuAQ</span><span class="invisible">k</span></a></p><p><a href="https://mstdn.social/tags/timeseries" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>timeseries</span></a> @python <a href="https://mstdn.social/tags/DataScience" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>DataScience</span></a> <a href="https://mstdn.social/tags/forecasting" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>forecasting</span></a></p>
Miki :rstats:<p><a href="https://techhub.social/tags/Day6" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Day6</span></a> of <a href="https://techhub.social/tags/30DayChartChallenge" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>30DayChartChallenge</span></a>, theme: <a href="https://techhub.social/tags/FlorenceNightingale" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>FlorenceNightingale</span></a></p><p>🔄🇪🇸 Estacionalidad promedio de compraventas de vivienda en España (2007-2024). Coxcomb plot muestra meses con ventas típicamente &gt;100 (altas) o &lt;100 (bajas) vs media anual.</p><p>Método: X-13ARIMA-SEATS con <a href="https://techhub.social/tags/rstats" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>rstats</span></a> {seasonal}. Datos: INE.</p><p>📂 Código: <a href="https://t.ly/lC34V" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="">t.ly/lC34V</span><span class="invisible"></span></a></p><p><a href="https://techhub.social/tags/dataviz" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>dataviz</span></a> <a href="https://techhub.social/tags/espa%C3%B1a" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>españa</span></a> <a href="https://techhub.social/tags/vivienda" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>vivienda</span></a> <a href="https://techhub.social/tags/INE" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>INE</span></a> <a href="https://techhub.social/tags/TimeSeries" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>TimeSeries</span></a> <a href="https://techhub.social/tags/Seasonality" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Seasonality</span></a></p>
OpenHistoricalMap<p>Thanks to <span class="h-card" translate="no"><a href="https://mstdn.social/@bmacs001" class="u-url mention" rel="nofollow noopener" target="_blank">@<span>bmacs001</span></a></span>, <a href="https://mapstodon.space/tags/OpenHistoricalMap" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>OpenHistoricalMap</span></a> has comprehensive coverage of <a href="https://mapstodon.space/tags/NewJersey" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>NewJersey</span></a> municipality boundaries over time. Watch the state get divvied up into counties, townships, boroughs, cities, towns, and villages in this mesmerizing <a href="https://mapstodon.space/tags/TimeSeries" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>TimeSeries</span></a>:</p><p><a href="https://www.reddit.com/r/newjersey/comments/1j4e1od/the_evolution_of_new_jerseys_county_and_municipal/" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://www.</span><span class="ellipsis">reddit.com/r/newjersey/comment</span><span class="invisible">s/1j4e1od/the_evolution_of_new_jerseys_county_and_municipal/</span></a></p><p><a href="https://mapstodon.space/tags/Boroughitis" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Boroughitis</span></a> <a href="https://mapstodon.space/tags/JerseyFresh" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>JerseyFresh</span></a></p>
The Big Data Cluster<p>Before that first cup of coffee cools, settle back for some reading about <a href="https://fediscience.org/tags/TimeSeries" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>TimeSeries</span></a> data from University of <a href="https://fediscience.org/tags/Vermont" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Vermont</span></a>-based Cluster members Byung Suk Lee and Donna Rizzo.</p><p>"This paper presents the first time series clustering benchmark utilizing all time series datasets currently available in the University of <a href="https://fediscience.org/tags/California" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>California</span></a> Riverside (UCR) archive."</p><p>📖🔗: <a href="https://bit.ly/4cD5nOk" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="">bit.ly/4cD5nOk</span><span class="invisible"></span></a> </p><p><a href="https://fediscience.org/tags/DataScience" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>DataScience</span></a> <a href="https://fediscience.org/tags/ComputerScience" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>ComputerScience</span></a> <a href="https://fediscience.org/tags/research" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>research</span></a> <a href="https://fediscience.org/tags/BigData" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>BigData</span></a></p>
Harald Klinke<p>A Look at TimeGPT with nixtlar in R<br>A first exploration of Nixtla’s TimeGPT, a Transformer-based model for time series forecasting, using the nixtlar R package. Learn how this self-attention architecture works and how to apply it in R.<br><a href="https://www.r-bloggers.com/2025/02/a-first-look-at-timegpt-using-nixtlar-2/" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://www.</span><span class="ellipsis">r-bloggers.com/2025/02/a-first</span><span class="invisible">-look-at-timegpt-using-nixtlar-2/</span></a><br><a href="https://det.social/tags/TimeSeries" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>TimeSeries</span></a> <a href="https://det.social/tags/MachineLearning" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>MachineLearning</span></a> <a href="https://det.social/tags/RStats" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>RStats</span></a> <a href="https://det.social/tags/AI" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>AI</span></a> <a href="https://det.social/tags/TimeGPT" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>TimeGPT</span></a></p>
DigitalDigger<p>That's a great tutorial 👌 Added to my list 💪 <br><a href="https://buff.ly/42s06Yg" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="">buff.ly/42s06Yg</span><span class="invisible"></span></a> <br><a href="https://fosstodon.org/tags/python" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>python</span></a> <a href="https://fosstodon.org/tags/pandas" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>pandas</span></a> <a href="https://fosstodon.org/tags/timeseries" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>timeseries</span></a></p>
VictoriaMetrics<p>🚀 VictoriaMetrics Playgrounds! Did you know that <a href="https://mastodon.social/tags/VictoriaMetrics" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>VictoriaMetrics</span></a> offers interactive <a href="https://mastodon.social/tags/playgrounds" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>playgrounds</span></a> to enhance your experience? 📷 Test the query engine: Experiment with queries to uncover valuable insights. 📷 Ready to explore? <br>Try today at bit.ly/4hNc9DJ <a href="https://mastodon.social/tags/timeseries" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>timeseries</span></a> <a href="https://mastodon.social/tags/observability" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>observability</span></a> <a href="https://mastodon.social/tags/opensource" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>opensource</span></a> <a href="https://mastodon.social/tags/devtools" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>devtools</span></a></p>
VictoriaMetrics<p>🚀 VictoriaMetrics Playgrounds!<br>Did you know that <a href="https://mastodon.social/tags/VictoriaMetrics" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>VictoriaMetrics</span></a> offers interactive Playgrounds to enhance your experience?</p><p>🔍 <a href="https://mastodon.social/tags/Test" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Test</span></a> the <a href="https://mastodon.social/tags/query" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>query</span></a> engine: Experiment with queries to uncover valuable insights.<br>🔧 Relabeling playground: Refine and transform your metrics effortlessly.<br>Whether testing, learning, or optimizing VictoriaMetrics Playgrounds supports your journey to better data insights.</p><p>🎯 Ready to explore? Try today at <a href="https://play.victoriametrics.com" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="">play.victoriametrics.com</span><span class="invisible"></span></a><br><a href="https://mastodon.social/tags/TimeSeries" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>TimeSeries</span></a> <a href="https://mastodon.social/tags/Observability" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Observability</span></a> <a href="https://mastodon.social/tags/OpenSource" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>OpenSource</span></a></p>
emmuzoo<p>🎉 The <a href="https://mastodon.social/tags/AirQualityInMadrid" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>AirQualityInMadrid</span></a> project is complete! I’ve built and deployed a working air quality prediction system using time series models. Learned a lot through the process, from data wrangling to deployment. <a href="https://mastodon.social/tags/MachineLearning" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>MachineLearning</span></a> <a href="https://mastodon.social/tags/TimeSeries" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>TimeSeries</span></a> <a href="https://mastodon.social/tags/DataScience" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>DataScience</span></a> <a href="https://mastodon.social/tags/Python" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Python</span></a> <a href="https://mastodon.social/tags/DataTalksClub" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>DataTalksClub</span></a> <a href="https://mastodon.social/tags/zoomcamp" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>zoomcamp</span></a> <a href="https://mastodon.social/tags/Machinelearning" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Machinelearning</span></a></p>
emmuzoo<p>💻 Now training models on the <a href="https://mastodon.social/tags/AirQualityInMadrid" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>AirQualityInMadrid</span></a> dataset! Using LSTM, ARIMA, and other models with <a href="https://mastodon.social/tags/Torch" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Torch</span></a> and <a href="https://mastodon.social/tags/Darts" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Darts</span></a>. Excited to see how each model performs for time series forecasting. <a href="https://mastodon.social/tags/MachineLearning" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>MachineLearning</span></a> <a href="https://mastodon.social/tags/TimeSeries" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>TimeSeries</span></a> <a href="https://mastodon.social/tags/Python" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Python</span></a> <a href="https://mastodon.social/tags/DataTalksClub" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>DataTalksClub</span></a> <a href="https://mastodon.social/tags/zoomcamp" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>zoomcamp</span></a> <a href="https://mastodon.social/tags/Machinelearning" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Machinelearning</span></a></p>