sigmoid.social is one of the many independent Mastodon servers you can use to participate in the fediverse.
A social space for people researching, working with, or just interested in AI!

Server stats:

596
active users

#computationalcomplexity

1 post1 participant0 posts today
Hacker News<p>Computational Complexity of Neural Networks</p><p><a href="https://lunalux.io/introduction-to-neural-networks/computational-complexity-of-neural-networks/" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">lunalux.io/introduction-to-neu</span><span class="invisible">ral-networks/computational-complexity-of-neural-networks/</span></a></p><p><a href="https://mastodon.social/tags/HackerNews" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>HackerNews</span></a> <a href="https://mastodon.social/tags/ComputationalComplexity" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>ComputationalComplexity</span></a> <a href="https://mastodon.social/tags/NeuralNetworks" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>NeuralNetworks</span></a> <a href="https://mastodon.social/tags/AIResearch" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>AIResearch</span></a> <a href="https://mastodon.social/tags/MachineLearning" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>MachineLearning</span></a> <a href="https://mastodon.social/tags/TechTrends" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>TechTrends</span></a></p>
Europe Says<p><a href="https://www.europesays.com/2228357/" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://www.</span><span class="">europesays.com/2228357/</span><span class="invisible"></span></a> Optimizing machine learning for network inference through comparative analysis of model performance in synthetic and real-world networks <a href="https://pubeurope.com/tags/Clustering" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Clustering</span></a> <a href="https://pubeurope.com/tags/ComputationalBiologyAndBioinformatics" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>ComputationalBiologyAndBioinformatics</span></a> <a href="https://pubeurope.com/tags/ComputationalComplexity" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>ComputationalComplexity</span></a> <a href="https://pubeurope.com/tags/Data" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Data</span></a> <a href="https://pubeurope.com/tags/engineering" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>engineering</span></a> <a href="https://pubeurope.com/tags/HumanitiesAndSocialSciences" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>HumanitiesAndSocialSciences</span></a> <a href="https://pubeurope.com/tags/LogisticRegression" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>LogisticRegression</span></a> <a href="https://pubeurope.com/tags/MachineLearning" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>MachineLearning</span></a> <a href="https://pubeurope.com/tags/ModelSelection" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>ModelSelection</span></a> <a href="https://pubeurope.com/tags/Modularity" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Modularity</span></a> <a href="https://pubeurope.com/tags/multidisciplinary" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>multidisciplinary</span></a> <a href="https://pubeurope.com/tags/NetworkInference" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>NetworkInference</span></a> <a href="https://pubeurope.com/tags/NetworkScience" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>NetworkScience</span></a> <a href="https://pubeurope.com/tags/RandomForest" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>RandomForest</span></a> <a href="https://pubeurope.com/tags/ScaleFreeNetworks" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>ScaleFreeNetworks</span></a> <a href="https://pubeurope.com/tags/science" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>science</span></a></p>
Joshua Grochow<p>This is an example of amortized complexity and Strassen's "asymptotic spectra" (nice monograph by Zuiddam &amp; Wigderson: <a href="https://www.math.ias.edu/~avi/PUBLICATIONS/WigdersonZu_Final_Draft_Oct2023.pdf" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://www.</span><span class="ellipsis">math.ias.edu/~avi/PUBLICATIONS</span><span class="invisible">/WigdersonZu_Final_Draft_Oct2023.pdf</span></a>)</p><p>Strassen developed this to understand the <a href="https://mathstodon.xyz/tags/complexity" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>complexity</span></a> of matrix multiplication and <a href="https://mathstodon.xyz/tags/tensors" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>tensors</span></a>, but it turns out to also show up in a bunch of places:<br>- <a href="https://mathstodon.xyz/tags/Entropy" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Entropy</span></a><br>- <a href="https://mathstodon.xyz/tags/Quantum" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Quantum</span></a> information<br>- Shannon capacity of graphs<br>- Communication complexity <a href="https://en.wikipedia.org/wiki/Communication_complexity#Information_Complexity" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">en.wikipedia.org/wiki/Communic</span><span class="invisible">ation_complexity#Information_Complexity</span></a><br>- Circuit complexity (Robere &amp; Zuiddam <a href="https://eccc.weizmann.ac.il/report/2021/035" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">eccc.weizmann.ac.il/report/202</span><span class="invisible">1/035</span></a>)</p><p><a href="https://mathstodon.xyz/tags/math" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>math</span></a> <a href="https://mathstodon.xyz/tags/probability" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>probability</span></a> <a href="https://mathstodon.xyz/tags/ComputationalComplexity" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>ComputationalComplexity</span></a> <a href="https://mathstodon.xyz/tags/TCS" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>TCS</span></a> <a href="https://mathstodon.xyz/tags/InformationTheory" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>InformationTheory</span></a></p>
Joshua Grochow<p>Real coin flips are ~49-51 not 50-50 <a href="https://www.scientificamerican.com/article/scientists-destroy-illusion-that-coin-toss-flips-are-50-50/" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://www.</span><span class="ellipsis">scientificamerican.com/article</span><span class="invisible">/scientists-destroy-illusion-that-coin-toss-flips-are-50-50/</span></a></p><p>But you can guarantee equal probability with a simple trick! Flip 2x in a row starting with the same side up.</p><p>HT-&gt;call it H<br>TH-&gt;call it T<br>HH,TT-&gt;try again</p><p>(due to von Neumann <a href="https://en.wikipedia.org/wiki/Randomness_extractor#Von_Neumann_extractor" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">en.wikipedia.org/wiki/Randomne</span><span class="invisible">ss_extractor#Von_Neumann_extractor</span></a>)</p><p>This leads to randomness extractors: from a given random process, what's the biggest uniform distribution you can get efficiently?</p><p>Randomness extractors give another interpretation of <a href="https://mathstodon.xyz/tags/entropy" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>entropy</span></a>:</p><p>avg # bits needed to *describe* the outcome<br>=<br># uniformly random bits you can *extract* from the outcome</p><p><a href="https://mathstodon.xyz/tags/math" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>math</span></a> <a href="https://mathstodon.xyz/tags/probability" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>probability</span></a> <a href="https://mathstodon.xyz/tags/ComputationalComplexity" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>ComputationalComplexity</span></a> <a href="https://mathstodon.xyz/tags/TCS" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>TCS</span></a> <a href="https://mathstodon.xyz/tags/InformationTheory" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>InformationTheory</span></a></p>
Saulo Popov Zambiasi<p>Trying to tame the NP-complete beast — writing a paper about my algorithm for solving the Hamiltonian cycle <a href="https://corteximplant.com/tags/graphs" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>graphs</span></a> <a href="https://corteximplant.com/tags/hamiltoncycle" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>hamiltoncycle</span></a> <a href="https://corteximplant.com/tags/npcomplete" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>npcomplete</span></a> <a href="https://corteximplant.com/tags/graphalgorithms" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>graphalgorithms</span></a> <a href="https://corteximplant.com/tags/computerscience" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>computerscience</span></a> <a href="https://corteximplant.com/tags/heuristics" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>heuristics</span></a> <a href="https://corteximplant.com/tags/optimization" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>optimization</span></a> <a href="https://corteximplant.com/tags/research" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>research</span></a> <a href="https://corteximplant.com/tags/computationalcomplexity" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>computationalcomplexity</span></a> <a href="https://corteximplant.com/tags/hacking" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>hacking</span></a> <a href="https://corteximplant.com/tags/latex" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>latex</span></a></p>
Dr. Anna Latour<p>Taught a bonus lecture for a course on Algorithms for NP-hard Problems today. Material won't be on the exam, so technically, this lecture was "just for fun".</p><p>Quite some pressure to make coming to class on Friday morning 8:45am worth it for a gang of 20-year-olds.</p><p>Students were a hoot. They were listening actively and participating. Great to meet them. Had a blast 🙂 </p><p>Afterwards, some of them thanked me for the "really great lecture" 🥺 </p><p>Ab-so-lute-ly exhausted now.</p><p><a href="https://mathstodon.xyz/tags/AcademicChatter" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>AcademicChatter</span></a> <a href="https://mathstodon.xyz/tags/AcademicLife" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>AcademicLife</span></a> <a href="https://mathstodon.xyz/tags/StudentLife" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>StudentLife</span></a> <a href="https://mathstodon.xyz/tags/ComputationalComplexity" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>ComputationalComplexity</span></a> <a href="https://mathstodon.xyz/tags/ComputerScience" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>ComputerScience</span></a> <a href="https://mathstodon.xyz/tags/Algorithms" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Algorithms</span></a> <a href="https://mathstodon.xyz/tags/AcademicMastodon" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>AcademicMastodon</span></a> <a href="https://mathstodon.xyz/tags/Teaching" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Teaching</span></a> <a href="https://mathstodon.xyz/tags/HigherEducation" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>HigherEducation</span></a> <a href="https://mathstodon.xyz/tags/University" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>University</span></a> <a href="https://mathstodon.xyz/tags/TUDelft" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>TUDelft</span></a></p>
Joshua Grochow<p>Dr. Alexandra Kolla will be presenting "Quantum Max Cuts and Local Hamiltonians" in the Codes &amp; Expansions (CodEx) seminar tomorrow Mar 4, 2025 at 10am PST = 19:00 CET. Sign up on the website: <a href="https://www.math.colostate.edu/~king/codex/" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://www.</span><span class="ellipsis">math.colostate.edu/~king/codex</span><span class="invisible">/</span></a></p><p><a href="https://mathstodon.xyz/tags/Quantum" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Quantum</span></a> <a href="https://mathstodon.xyz/tags/ComputationalComplexity" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>ComputationalComplexity</span></a></p>

Given a decision problem Π, I need a name for the polytope constructed by taking the convex hull of the characteristic vectors (or binary inputs of fixed length) corresponding to "yes" instances. If nobody has a better suggestion I might use "the characteristic polytope of Π". OTOH, for $reasons I'd much rather use something more standard / widespread.

Continued thread

Turns out rational approximation of irrationals is related to the Hartmanis-Stearns '65 Conjecture on real-time computability, from the same paper that introduced basic complexity classes like DTIME(f(n)). And sqrt(2) makes an appearance!

The Hartmanis-Stearns real-time computability conjecture is (equivalent to):

For a real number r, if there is an algorithm that computes the first n digits in O(n) time (for all n), then r is either rational or transcendental.

And, coming from this, sqrt(2) has an even cooler connection:

If the 1st n digits of sqrt(2) can't be computed in O(n) time, then n-bit integers can't be multiplied in O(n) time. -Lipton & Regan rjlipton.wpcomstaging.com/2012

(But...sqrt(2) probably isn't the only number for which the above is true. Still a cool connection, I think.)

Gödel's Lost Letter and P=NP · Why The Hartmanis-Stearns Conjecture Is Still OpenA missed? or forgotten? connection from 1976 Richard Brent is an illustrious Australian mathematician and computer scientist. He is known for Brent’s Theorem, which shows that a parallel algo…

It's well known you can find a solution to the linear Diophantine equation

\[ a_1x_1 + a_2x_2 + \ldots + a_nx_n = c \]

in polynomial time using the Extended Euclidean Algorithm. But I haven't been able to find a clear answer for the complexity of finding a non-negative integer solution, that is, \( x_i \geq 0 \).

The unbounded knapsack problem is NP-complete, and this is the case where the weights and costs are equal, but I'm not sure that the NP-hardness reduction applies given that additional constraint.

I have also found a statement that the "multidimensional knapsack problem" is NP-hard even with a single row, which seems to match this, but I lack a copy of Papadimitriou and Steiglitz to verify that statement, and can't figure out the reduction.

If this problem is NP-hard, then I'm also interested in showing that a related problem is also NP-hard: if we have one non-negative solution, can we find a second one? I'm trying to answer a question about the special case \( c = \sum_{i=1}^{n} a_i \).

I'm going to be talking about Algorithmic CGT in India in a few weeks. I really want to start with the fundamentals of #PSPACE, so I want to present the Boolean Formula Game (en.wikipedia.org/wiki/Formula_). Whenever I talk about a game, I like to play it with the audience.

So... I coded a working version: kyleburke.info/DB/combGames/bo

It's not particularly fun, mostly because it's often very easy to win as the True player. (I didn't implement any deep strategies to generate more interesting formulas. Advice is welcome!)

Nevertheless, I'm very excited to use this next week and in future talks. #CombinatorialGames #ComputationalComplexity #WebGames

en.wikipedia.orgFormula game - Wikipedia