sigmoid.social is one of the many independent Mastodon servers you can use to participate in the fediverse.
A social space for people researching, working with, or just interested in AI!

Server stats:

596
active users

#dataframe

0 posts0 participants0 posts today
Erik-Jan<p>I was annoyed that there is no "expand_grid()" function in :python: <a href="https://fosstodon.org/tags/Python" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Python</span></a> as in :rstats: <a href="https://fosstodon.org/tags/RStats" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>RStats</span></a> <a href="https://fosstodon.org/tags/tidyverse" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>tidyverse</span></a> </p><p>So I just published a small package on <a href="https://fosstodon.org/tags/PyPI" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>PyPI</span></a> !</p><p>Introducing polarsgrid<br><a href="https://pypi.org/project/polarsgrid/" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="">pypi.org/project/polarsgrid/</span><span class="invisible"></span></a></p><p>Using the excellent <a href="https://fosstodon.org/tags/polars" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>polars</span></a> 🐻‍❄️ package, easily create a table with product of factors: </p><p>from polarsgrid import expand_grid<br>expand_grid(a=[1, 2, 3], b=["x", "y"])</p><p>Yields all combinations of its inputs as a <a href="https://fosstodon.org/tags/DataFrame" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>DataFrame</span></a></p><p>It can also produce a <a href="https://fosstodon.org/tags/LazyFrame" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>LazyFrame</span></a> for streaming extra-big tables to disk</p>
Diego Córdoba 🇦🇷<p>Nuevo post en el blog de <a href="https://mstdn.io/tags/juncotic" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>juncotic</span></a>! 💪 </p><p>Seguimos con <a href="https://mstdn.io/tags/python" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>python</span></a> de la mano de <span class="h-card" translate="no"><a href="https://mastodon.social/@andrea_navarro" class="u-url mention" rel="nofollow noopener" target="_blank">@<span>andrea_navarro</span></a></span> </p><p>¿Han usado <a href="https://mstdn.io/tags/Pandas" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Pandas</span></a> para trabajar con datos?</p><p>Hoy Andrea nos explica cómo usarlo para ordenar columnas de un DataFrame, con ejemplos prácticos, y un CSV descargable para jugar con los datos 😃 </p><p>Pueden leerlo acá: 👇 </p><p><a href="https://juncotic.com/ordenamiento-de-columnas-con-pandas/" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">juncotic.com/ordenamiento-de-c</span><span class="invisible">olumnas-con-pandas/</span></a></p><p>Espero que les guste y sirva! 🙂 </p><p><a href="https://mstdn.io/tags/python" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>python</span></a> <a href="https://mstdn.io/tags/pandas" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>pandas</span></a> <a href="https://mstdn.io/tags/dataframe" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>dataframe</span></a> <a href="https://mstdn.io/tags/datascience" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>datascience</span></a> <a href="https://mstdn.io/tags/data" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>data</span></a></p>
Steven P. Sanderson II, MPH<p>I've talked about creating data.frames and tibbles before, but it is an important topic so I have covered it again. This time specifically from the perspective of creating them from vectors. Post: <a href="https://www.spsanderson.com/steveondata/posts/2025-06-09/" rel="nofollow noopener" target="_blank">www.spsanderson.com/steveondata/...</a> <a class="hashtag" rel="nofollow noopener" href="https://bsky.app/search?q=%23R" target="_blank">#R</a> <a class="hashtag" rel="nofollow noopener" href="https://bsky.app/search?q=%23RStats" target="_blank">#RStats</a> <a class="hashtag" rel="nofollow noopener" href="https://bsky.app/search?q=%23tibble" target="_blank">#tibble</a> <a class="hashtag" rel="nofollow noopener" href="https://bsky.app/search?q=%23dplyr" target="_blank">#dplyr</a> <a class="hashtag" rel="nofollow noopener" href="https://bsky.app/search?q=%23tidyverse" target="_blank">#tidyverse</a> <a class="hashtag" rel="nofollow noopener" href="https://bsky.app/search?q=%23dataframe" target="_blank">#dataframe</a> <a class="hashtag" rel="nofollow noopener" href="https://bsky.app/search?q=%23baseR" target="_blank">#baseR</a> <a class="hashtag" rel="nofollow noopener" href="https://bsky.app/search?q=%23blog" target="_blank">#blog</a></p>
Steven Sanderson<p>I've talked about creating data.frames and tibbles before, but it is an important topic so I have covered it again. This time specifically from the perspective of creating them from vectors.</p><p>Post: <a href="https://www.spsanderson.com/steveondata/posts/2025-06-09/" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://www.</span><span class="ellipsis">spsanderson.com/steveondata/po</span><span class="invisible">sts/2025-06-09/</span></a></p><p><a href="https://rstats.me/tags/R" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>R</span></a> <a href="https://rstats.me/tags/RStats" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>RStats</span></a> <a href="https://rstats.me/tags/tibble" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>tibble</span></a> <a href="https://rstats.me/tags/dplyr" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>dplyr</span></a> <a href="https://rstats.me/tags/tidyverse" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>tidyverse</span></a> <a href="https://rstats.me/tags/dataframe" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>dataframe</span></a> <a href="https://rstats.me/tags/baseR" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>baseR</span></a> <a href="https://rstats.me/tags/blog" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>blog</span></a> <a href="https://rstats.me/tags/Technology" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Technology</span></a></p>
Steven P. Sanderson II, MPH<p>I've talked about creating data.frames and tibbles before, but it is an important topic so I have covered it again. This time specifically from the perspective of creating them from vectors.</p><p>Post: <a href="https://www.spsanderson.com/steveondata/posts/2025-06-09/" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://www.</span><span class="ellipsis">spsanderson.com/steveondata/po</span><span class="invisible">sts/2025-06-09/</span></a></p><p><a href="https://mstdn.social/tags/R" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>R</span></a> <a href="https://mstdn.social/tags/RStats" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>RStats</span></a> <a href="https://mstdn.social/tags/tibble" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>tibble</span></a> <a href="https://mstdn.social/tags/dplyr" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>dplyr</span></a> <a href="https://mstdn.social/tags/tidyverse" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>tidyverse</span></a> <a href="https://mstdn.social/tags/dataframe" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>dataframe</span></a> <a href="https://mstdn.social/tags/baseR" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>baseR</span></a> <a href="https://mstdn.social/tags/blog" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>blog</span></a> <a href="https://mstdn.social/tags/Technology" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Technology</span></a></p>
Francois Dion<p>Anybody using the narwhals <a href="https://mastodon.online/tags/python" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>python</span></a> package for <a href="https://mastodon.online/tags/dataframe" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>dataframe</span></a> manipulations?</p><p>Very comfortable with <a href="https://mastodon.online/tags/pandas" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>pandas</span></a> and <a href="https://mastodon.online/tags/polars" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>polars</span></a> syntax, but although <a href="https://mastodon.online/tags/narwhals" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>narwhals</span></a> is supposed to be very close to polars, it is a subset and I find that there is a lot of basic stuff missing. Trying to figure out how to get the first part of a str.split.</p><p>in pandas I just add .str[0] and in polars .list.get(0)</p><p>with narwhals neither approaches are implemented. Any idea as what is supported in narwhals to do this?<br><a href="https://mastodon.online/tags/programming" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>programming</span></a></p>
r⁵py<p>Computing travel time matrices in r⁵py from <span class="h-card" translate="no"><a href="https://fosstodon.org/@geopandas" class="u-url mention" rel="nofollow noopener" target="_blank">@<span>geopandas</span></a></span> <a href="https://mapstodon.space/tags/DataFrame" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>DataFrame</span></a> is two lines of code: </p><p>(1) create an r5py.TransportNetwork from <span class="h-card" translate="no"><a href="https://en.osm.town/@openstreetmap" class="u-url mention" rel="nofollow noopener" target="_blank">@<span>openstreetmap</span></a></span> and <a href="https://mapstodon.space/tags/GTFS" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>GTFS</span></a> data</p><p>(2) turn it into an r5py.TravelTimeMatrix()</p><p>Try it out in <a href="https://mapstodon.space/tags/binder" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>binder</span></a>: <a href="https://r5py.readthedocs.io/stable/user-guide/user-manual/quickstart.html" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">r5py.readthedocs.io/stable/use</span><span class="invisible">r-guide/user-manual/quickstart.html</span></a></p>
simpleSolution<p>OPEN SOURCE 🚀 </p><p>The Problem❔ </p><p>There have been many instances where I needed to compare two dataframes and analyze their differences. To address this need, I created a fast Python library called "data_fingerprint" that does exactly that.</p><p>Check it out and let me know what you think! 🕵‍♂️ <br><a href="https://github.com/SimpleSimpler/data_fingerprint" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">github.com/SimpleSimpler/data_</span><span class="invisible">fingerprint</span></a></p><p><a href="https://mastodon.social/tags/datascience" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>datascience</span></a> <a href="https://mastodon.social/tags/python" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>python</span></a> <a href="https://mastodon.social/tags/pandas" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>pandas</span></a> <a href="https://mastodon.social/tags/dataanalytics" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>dataanalytics</span></a> <a href="https://mastodon.social/tags/dataengineering" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>dataengineering</span></a> <a href="https://mastodon.social/tags/dataframe" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>dataframe</span></a> <a href="https://mastodon.social/tags/data" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>data</span></a></p>
laguill<p>Hi fedi 😊<br>I am struggling with <a href="https://fosstodon.org/tags/vegaaltair" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>vegaaltair</span></a>.</p><p>Do you have any resources of density faceted plots ?</p><p>I am trying to <a href="https://fosstodon.org/tags/plot" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>plot</span></a> densities of a selection of columns of a <a href="https://fosstodon.org/tags/dataframe" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>dataframe</span></a> with mean and median highlighted.</p><p><a href="https://fosstodon.org/tags/dataviz" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>dataviz</span></a> <a href="https://fosstodon.org/tags/DataScience" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>DataScience</span></a> <a href="https://fosstodon.org/tags/Python" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Python</span></a></p>
Alejandro_P<p>what I can do is <a href="https://mathstodon.xyz/tags/thresholding" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>thresholding</span></a> / binarize and obtain the boundary, but not save each boundary as its own file (hopefully as a <a href="https://mathstodon.xyz/tags/DataFrame" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>DataFrame</span></a>)</p>
SimonMolinsky<p>I’ve written article about <a href="https://fosstodon.org/tags/pandera" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>pandera</span></a> - <a href="https://fosstodon.org/tags/Python" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Python</span></a> package used for <a href="https://fosstodon.org/tags/pandas" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>pandas</span></a> <a href="https://fosstodon.org/tags/DataFrame" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>DataFrame</span></a> validation: <a href="https://www.linkedin.com/pulse/do-you-use-dataframes-your-production-environment-schema-molinski-9swaf" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://www.</span><span class="ellipsis">linkedin.com/pulse/do-you-use-</span><span class="invisible">dataframes-your-production-environment-schema-molinski-9swaf</span></a></p><p>(Sorry that this is on LinkedIn, but I’m trying to reach general audience there - my main goal is to promote the package and <span class="h-card" translate="no"><a href="https://fosstodon.org/@pyOpenSci" class="u-url mention" rel="nofollow noopener" target="_blank">@<span>pyOpenSci</span></a></span> , and LinkedIn has larger community than my personal blog 😊)</p>
PyCharm Blog<p>Data Exploration With pandas<br><a href="https://techhub.social/tags/Python" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Python</span></a> <a href="https://techhub.social/tags/Pycharm" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Pycharm</span></a> <a href="https://techhub.social/tags/Datascience" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Datascience</span></a> <a href="https://techhub.social/tags/Dataframe" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Dataframe</span></a> <a href="https://techhub.social/tags/Pandas" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Pandas</span></a> <a href="https://techhub.social/tags/Pandasdataframes" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Pandasdataframes</span></a></p><p><a href="https://blog.jetbrains.com/pycharm/2024/10/data-exploration-with-pandas/" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">blog.jetbrains.com/pycharm/202</span><span class="invisible">4/10/data-exploration-with-pandas/</span></a></p>