sigmoid.social is one of the many independent Mastodon servers you can use to participate in the fediverse.
A social space for people researching, working with, or just interested in AI!

Server stats:

597
active users

#mathlib

0 posts0 participants0 posts today
José A. Alonso<p>Readings shared July 19, 2025. <a href="https://jaalonso.github.io/vestigium/posts/2025/07/20-readings_shared_07-19-25" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">jaalonso.github.io/vestigium/p</span><span class="invisible">osts/2025/07/20-readings_shared_07-19-25</span></a> <a href="https://mathstodon.xyz/tags/CoqProver" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>CoqProver</span></a> <a href="https://mathstodon.xyz/tags/FunctionalProgramming" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>FunctionalProgramming</span></a> <a href="https://mathstodon.xyz/tags/Haskell" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Haskell</span></a> <a href="https://mathstodon.xyz/tags/ITP" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>ITP</span></a> <a href="https://mathstodon.xyz/tags/IsabelleHOL" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>IsabelleHOL</span></a> <a href="https://mathstodon.xyz/tags/LLMs" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>LLMs</span></a> <a href="https://mathstodon.xyz/tags/LeanProver" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>LeanProver</span></a> <a href="https://mathstodon.xyz/tags/Logic" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Logic</span></a> <a href="https://mathstodon.xyz/tags/Math" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Math</span></a> <a href="https://mathstodon.xyz/tags/Mathlib" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Mathlib</span></a> <a href="https://mathstodon.xyz/tags/Reasoning" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Reasoning</span></a> <a href="https://mathstodon.xyz/tags/Rocq" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Rocq</span></a></p>
José A. Alonso<p>Lean Finder: Semantic search for Mathlib that understands user intents. ~ Jialin Lu et als. <a href="https://openreview.net/forum?id=5SF4fFRw7u" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">openreview.net/forum?id=5SF4fF</span><span class="invisible">Rw7u</span></a> <a href="https://mathstodon.xyz/tags/ITP" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>ITP</span></a> <a href="https://mathstodon.xyz/tags/LeanProver" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>LeanProver</span></a> <a href="https://mathstodon.xyz/tags/Mathlib" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Mathlib</span></a></p>
José A. Alonso<p>Readings shared May 10, 2025. <a href="https://jaalonso.github.io/vestigium/posts/2025/05/10-readings_shared_05-10-25" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">jaalonso.github.io/vestigium/p</span><span class="invisible">osts/2025/05/10-readings_shared_05-10-25</span></a> <a href="https://mathstodon.xyz/tags/ITP" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>ITP</span></a> <a href="https://mathstodon.xyz/tags/LeanProver" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>LeanProver</span></a> <a href="https://mathstodon.xyz/tags/Math" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Math</span></a> <a href="https://mathstodon.xyz/tags/Mathlib" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Mathlib</span></a> <a href="https://mathstodon.xyz/tags/Python" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Python</span></a></p>
José A. Alonso<p>LeanExplore: a new Mathlib search engine that combines semantic search embeddings, AI-generated translations, and PageRank to give optimized search results. <a href="https://www.leanexplore.com/" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://www.</span><span class="">leanexplore.com/</span><span class="invisible"></span></a> <a href="https://mathstodon.xyz/tags/ITP" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>ITP</span></a> <a href="https://mathstodon.xyz/tags/LeanProver" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>LeanProver</span></a> <a href="https://mathstodon.xyz/tags/Mathlib" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Mathlib</span></a></p>
José A. Alonso<p>Readings shared April 2, 2025. <a href="https://jaalonso.github.io/vestigium/posts/2025/04/02-readings_shared_04-02-25" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">jaalonso.github.io/vestigium/p</span><span class="invisible">osts/2025/04/02-readings_shared_04-02-25</span></a> <a href="https://mathstodon.xyz/tags/FunctionalProgramming" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>FunctionalProgramming</span></a> <a href="https://mathstodon.xyz/tags/HOL4" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>HOL4</span></a> <a href="https://mathstodon.xyz/tags/Haskell" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Haskell</span></a> <a href="https://mathstodon.xyz/tags/ITP" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>ITP</span></a> <a href="https://mathstodon.xyz/tags/IsabelleHOL" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>IsabelleHOL</span></a> <a href="https://mathstodon.xyz/tags/LLMs" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>LLMs</span></a> <a href="https://mathstodon.xyz/tags/LeanProver" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>LeanProver</span></a> <a href="https://mathstodon.xyz/tags/Logic" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Logic</span></a> <a href="https://mathstodon.xyz/tags/LogicProgramming" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>LogicProgramming</span></a> <a href="https://mathstodon.xyz/tags/Math" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Math</span></a> <a href="https://mathstodon.xyz/tags/Mathlib" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Mathlib</span></a> <a href="https://mathstodon.xyz/tags/Prolog" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Prolog</span></a></p>
José A. Alonso<p>Basic probability in Mathlib. ~ Rémy Degenne. <a href="https://leanprover-community.github.io/blog/posts/basic-probability-in-mathlib/" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">leanprover-community.github.io</span><span class="invisible">/blog/posts/basic-probability-in-mathlib/</span></a> <a href="https://mathstodon.xyz/tags/ITP" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>ITP</span></a> <a href="https://mathstodon.xyz/tags/LeanProver" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>LeanProver</span></a> <a href="https://mathstodon.xyz/tags/Mathlib" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Mathlib</span></a> <a href="https://mathstodon.xyz/tags/Math" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Math</span></a></p>
José A. Alonso<p>Readings shared February 5, 2025. <a href="https://jaalonso.github.io/vestigium/posts/2025/02/05-readings_shared_02-05-25" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">jaalonso.github.io/vestigium/p</span><span class="invisible">osts/2025/02/05-readings_shared_02-05-25</span></a> <a href="https://mathstodon.xyz/tags/ITP" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>ITP</span></a> <a href="https://mathstodon.xyz/tags/IsabelleHOL" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>IsabelleHOL</span></a> <a href="https://mathstodon.xyz/tags/LeanProver" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>LeanProver</span></a> <a href="https://mathstodon.xyz/tags/Mathlib" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Mathlib</span></a> <a href="https://mathstodon.xyz/tags/LLMs" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>LLMs</span></a> <a href="https://mathstodon.xyz/tags/Math" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Math</span></a></p>
José A. Alonso<p>A semantic search engine for Mathlib4. ~ Guoxiong Gao, Haocheng Ju, Jiedong Jiang, Zihan Qin, Bin Dong. <a href="https://arxiv.org/abs/2403.13310" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="">arxiv.org/abs/2403.13310</span><span class="invisible"></span></a> <a href="https://mathstodon.xyz/tags/ITP" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>ITP</span></a> <a href="https://mathstodon.xyz/tags/LeanProver" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>LeanProver</span></a> <a href="https://mathstodon.xyz/tags/Mathlib" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Mathlib</span></a></p>

As a step towards computer-formalizing the classification of low-dimensional Lie algebras, we finally formalized our first non-boring theorem in #Lean4 !

If L is a 3-dimensional Lie algebra (over any field) with a one-dimensional commutator subalgebra which is contained in the center of L, then L is isomorphic to the 3D Heisenberg algebra - that is, it has a basis (𝑒₀, 𝑒₁, 𝑒₂) such that the bracket is determined by
[𝑒₁,𝑒₂]=𝑒₀,
[𝑒₀,𝑒₁]=0,
[𝑒₀,𝑒₂]=0.

Now we're working on the analogous results for higher dimensional commutator subalgebras. These are going to be harder because
a) there's no one-size-fits-all classification statement for arbitrary fields, and
b) they rely on certain normal forms of matrices which aren't yet implemented in #mathlib .